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Abstract. Fix an integer d ≥ 2. The space Pd of polynomial maps of degree
d modulo conjugation by affine transformations is naturally an affine variety
over Q of dimension d − 1. For each integer P ≥ 1, the elementary symmetric
functions of the multipliers at all the cycles with period p ∈ {1, . . . , P } induce
a natural morphism Mult(P )

d
defined on Pd. In this article, we show that the

morphism Mult(2)
d

induced by the multipliers at the cycles with periods 1 and
2 is both finite and birational onto its image. In the case of polynomial maps,
this strengthens results by McMullen and by Ji and Xie stating that Mult(P )

d
is quasifinite and birational onto its image for all sufficiently large integers P .
Our result arises as the combination of the following two statements:

• A sequence of polynomials over C of degree d with bounded multipliers
at its cycles with periods 1 and 2 is necessarily bounded in Pd(C).

• A generic conjugacy class of polynomials over C of degree d is uniquely
determined by its multipliers at its cycles with periods 1 and 2.

1. Introduction

Fix any integer d ≥ 2. We wish here to describe the space Polyd of polynomials
of degree d from a dynamical perspective. The group Aff of affine transformations
acts on Polyd by conjugation, via ϕ � f = ϕ ◦ f ◦ ϕ−1. Since conjugate polynomials
induce the same dynamical system, up to some change of coordinates, it is natural
to consider the space Pd = Polyd /Aff of conjugacy classes of polynomial maps of
degree d. This quotient space Pd is naturally an affine variety over Q of dimension
d− 1 called the moduli space of polynomial maps of degree d. As an affine variety,
Pd is completely determined by its coordinate ring Q [Pd], consisting of all regular
functions defined on Pd. From a dynamical point of view, natural regular functions
on Pd are given by the elementary symmetric functions of the multipliers at all the
cycles with any given period. Thus, it is natural to ask how well the multipliers at
the cycles describe the moduli space Pd.

Suppose that K is an arbitrary algebraically closed field of characteristic 0 and
f ∈ Polyd(K). Recall that a point z0 ∈ K is periodic for f if there is some integer
p ≥ 1 such that f◦p (z0) = z0. In this case, the smallest such integer p is called the
period of z0 and {f◦n (z0) : n ≥ 0} is said to be a cycle for f . The multiplier of f
at z0 is the number λ = (f◦p)′ (z0) ∈ K. The polynomial f has the same multiplier
at each point of the cycle. Moreover, the multiplier is invariant under conjugation:
if ϕ ∈ Aff(K), then ϕ (z0) is periodic for ϕ � f with period p and multiplier λ.

2020 Mathematics Subject Classification. Primary 37F46, 37P45; Secondary 37F10, 37P05,
37P30.

The research of the author was partly supported by the German Research Foundation (DFG,
project number 455038303).

1



2 VALENTIN HUGUIN

Given f ∈ Polyd(K), with K an algebraically closed field of characteristic 0, for
p ≥ 1, we denote by Λ(p)

f ∈ KN
(p)
d /S

N
(p)
d

the multiset of multipliers of f at all its
cycles with period p, which depends only on the conjugacy class [f ] ∈ Pd(K). We
ask here if f ∈ Polyd(K), with K an algebraically closed field of characteristic 0, is
characterized by its multiplier spectrum

(
Λ(p)

f

)
p≥1

. Since Pd is finite-dimensional,
we can even ask if Pd is well described by the multipliers at the cycles with period
at most P for some integer P ≥ 1.

For n ≥ 1, we denote by An the affine space of dimension n over Q. For N ≥ 1
and every algebraically closed field K, we have a natural bijection KN/SN

∼= KN

given by the elementary symmetric functions. Via these identifications, for P ≥ 1,

we consider the multiplier spectrum morphism Mult(P )
d : Pd →

P∏
p=1

AN
(p)
d given by

Mult(P )
d ([f ]) =

(
Λ(1)

f , . . . ,Λ(P )
f

)
.

Here, we show that the multipliers at the cycles with periods 1 and 2 provide a
good description of the space Pd. More precisely, our main result is the following:

Main Theorem. Assume that d ≥ 2 is an integer. Then Mult(2)
d induces a finite

birational morphism from Pd onto its image Σ(2)
d . Furthermore, if d ∈ {2, 3}, then

Mult(1)
d induces an isomorphism from Pd onto its image Σ(1)

d .

Remark 1. It follows from Main Theorem that Mult(P )
d induces a finite birational

morphism from Pd onto its image Σ(P )
d for all P ≥ 2. Moreover, if d ∈ {2, 3}, then

Mult(P )
d induces an isomorphism from Pd onto its image Σ(P )

d for all P ≥ 1.

Remark 2. In general, Mult(P )
d may not be an isomorphism onto its image Σ(P )

d for
any P ≥ 1 (see Appendix B for details).

In fact, Main Theorem is a direct combination of Theorems A and C, which we
now present.

1.1. Degeneration of complex polynomial maps and multipliers at small
cycles. It is natural to investigate the behavior of multipliers under degeneration
in the space Pd(C) of affine conjugacy classes of complex polynomials of degree d.
This study was notably conducted by DeMarco and McMullen in [DM08]. We ask
here if degeneration in the space Pd(C) is always detected by the multipliers at the
cycles with small periods.

The set Pd(C) of conjugacy classes of complex polynomial maps of degree d is
naturally a complex orbifold of dimension d − 1. We say that a sequence (fn)n≥0
of elements of Polyd(C) degenerates in Pd(C) if the sequence ([fn])n≥0 eventually
leaves every compact subset of Pd(C). We can also express degeneration in Pd(C)
in terms of maximal escape rates.

Given an algebraically closed field K of characteristic 0 equipped with an abso-
lute value |.| and f ∈ Polyd(K), the Green function gf : K → R≥0 is given by

gf (z) = lim
n→+∞

1
dn

log+ |f◦n(z)|

and the maximal escape rate Mf of f is defined by
Mf = max {gf (c) : c ∈ K, f ′(c) = 0} .
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The maximal escape rate is invariant under conjugation. Moreover, in the complex
case, the maximal escape rate characterizes degeneration in Pd(C). More precisely,
any sequence (fn)n≥0 of elements of Polyd(C) degenerates in Pd(C) if and only if

lim
n→+∞

Mfn
= +∞.

Now, given an algebraically closed field K of characteristic 0 equipped with an
absolute value |.| and f ∈ Polyd(K), for p ≥ 1, we define

M
(p)
f = max

λ∈Λ(p)
f

(
1
p

log|λ|
)

to be the maximal characteristic exponent of f at a cycle with period p.
By [Oku12], for every algebraically closed valued field K of characteristic 0 and

every f ∈ Polyd(K), we have

lim
p→+∞

1
N

(p)
d

∑
λ∈Λ(p)

f

(
1
p

log|λ|
)

= log|d| +
∑

c∈Γf

ρc · gf (c) ,

where Γf ⊆ K is the set of critical points for f and ρc ≥ 1 denotes the multiplicity
of c as a critical point for f for each c ∈ Γf , which yields sup

p≥1
M

(p)
f ≥ Mf + log|d|.

In particular, if (fn)n≥0 is any sequence of elements of Polyd(C) that degenerates
in Pd(C), then lim

n→+∞
sup
p≥1

M
(p)
fn

= +∞. Thus, degeneration in Pd(C) is detected by

the full multiplier spectrum.
We show here that degeneration in Pd(C) is already detected by the multipliers

at the cycles with periods 1 and 2. Explicitly, we obtain the following:
Theorem A. Assume that d ≥ 2 is an integer and (fn)n≥0 is any sequence of
elements of Polyd(C) that degenerates in Pd(C). Then

lim
n→+∞

max
{
M

(1)
fn
,M

(2)
fn

}
= +∞ .

Furthermore, if d ∈ {2, 3}, then lim
n→+∞

M
(1)
fn

= +∞.

As a consequence of Theorem A, the morphism Mult(2)
d given by the multipliers

at the cycles with periods 1 and 2 is proper, and hence finite since Pd is an affine
variety. In the polynomial case, this strengthens a result established by McMullen
in [McM87] stating that Mult(P )

d is a quasifinite morphism for some integer P ≥ 1.
By contrast, Fujimura proved in [Fuj07] that the morphism Mult(1)

d induced by the
multipliers at the fixed points is neither quasifinite nor surjective onto its scheme-
theoretic image Σ(1)

d if d ≥ 4.
Then, using the fact that Mult(2)

d is a finite morphism, we generalize Theorem A
to polynomials over any algebraically closed valued field of characteristic 0. More
precisely, we obtain the following stronger result:
Corollary A.1. Suppose that d ≥ 2 is an integer and K is an algebraically closed
valued field of characteristic 0. Then there exist A ∈ R>0 and B ∈ R such that

max
{
M

(1)
f ,M

(2)
f

}
≥ A ·Mf +B

for all f ∈ Polyd(K). Moreover, if d ∈ {2, 3}, then there exist A ∈ R>0 and B ∈ R
such that M (1)

f ≥ A ·Mf +B for all f ∈ Polyd(K).
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We also deduce a relation between the critical height of any polynomial defined
over a number field and the standard heights of its multipliers at the small cycles.
Here, denote by h : Q → R≥0 the standard height on the algebraic closure Q of Q.
Given f ∈ Polyd

(
Q
)
, define Hf to be the critical height of f and, for p ≥ 1, define

H
(p)
f = max

λ∈Λ(p)
f

h(λ) (see Subsection 3.5 for details). We obtain the following:

Corollary A.2. Suppose that d ≥ 2 is an integer. Then there exist A ∈ R>0 and
B ∈ R such that

max
{
H

(1)
f , H

(2)
f

}
≥ A ·Hf +B

for all f ∈ Polyd

(
Q
)
. Moreover, if d ∈ {2, 3}, then there exist A ∈ R>0 and B ∈ R

such that H(1)
f ≥ A ·Hf +B for all f ∈ Polyd

(
Q
)
.

In fact, we obtain Theorem A as a direct consequence of the quantitative result
below. In most cases, this is a stronger version of Corollary A.1. Furthermore, the
bounds in our statement are optimal.

Theorem B. Assume that d ≥ 2 is an integer, K is an algebraically closed valued
field of characteristic 0 that is either Archimedean or non-Archimedean with residue
characteristic 0 or greater than d and f ∈ Polyd(K). If d ≥ 4, then

M
(1)
f ≥ d− 1

d− 2Mf or M
(2)
f ≥ Cd ·Mf , with Cd =

{
2(d−1)

d if d is even
2d

d+1 if d is odd
.

In addition, M (1)
f ≥ Mf if d = 2, and M (1)

f ≥ 2Mf if d = 3.

Remark 3. Alternatively, one can establish Theorem A by relating bounded multi-
pliers to rescalings for sequences of polynomial maps and by counting some critical
points. Suppose that (fn)n≥0 is a sequence of elements of Polyd(C). We say that a
sequence (ϕn)n≥0 of elements of Aff(C) is a rescaling for (fn)n≥0 with period p ≥ 1
and degree e ≥ 2 if

(
ϕn ◦ f◦p

n ◦ ϕ−1
n

)
n≥0 converges locally uniformly on C to some

g ∈ Polye(C). We say that two rescalings (ϕn)n≥0 and (ψn)n≥0 are independent if,
for each bounded subset D of C, we have ϕ−1

n (D) ∩ψ−1
n (D) = ∅ for all sufficiently

large n. More precisely, to prove Theorem A, one can proceed as follows: Assume
that both sup

n≥0
M

(1)
fn

< +∞ and sup
n≥0

M
(2)
fn

< +∞. Then, according to the discussion

in [FT08, Section 2], possibly passing to some subsequence, (fn)n≥0 has pairwise
independent rescalings (ϕj,n)n≥0 with period 1 and respective degrees dj ≥ 2, with

r ≥ 1 and j ∈ {1, . . . , r}, such that
r∑

j=1
dj = d. If d ∈ {2, 3}, then r = 1, and hence

(fn)n≥0 does not degenerate in Pd(C). Thus, assume that d ≥ 4. Using again the
arguments of [FT08, Section 2] and passing to a subsequence if necessary, (fn)n≥0
has pairwise independent rescalings (ψk,n)n≥0 with period 2 and respective degrees
ek ≥ 2, with s ≥ 0 and k ∈ {1, . . . , s}, that are independent from all the (ϕj,n)n≥0,

with j ∈ {1, . . . , r}, and such that
r∑

j=1
d2

j +
s∑

k=1
ek = d2. Finally, given a sufficiently

large bounded subset D of C, define N ≥ 0 to be the number of critical points for
f◦2

n in
s⋃

k=1
ψ−1

k,n(D) for all sufficiently large n, counting multiplicities. Then one can
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show that N ≥ 2(d− 1)(r − 1) and N ≤ (d+ 1)(r − 1), which yields r = 1. Thus,
the sequence (fn)n≥0 does not degenerate in Pd(C). We refer the reader to [Fav24]
for a concise and complete proof of Theorem A using analogous arguments, which
considers the dynamical system induced by a meromorphic family of rational maps
on a certain Berkovich projective line (see [Kiw15] for the correspondence between
rescalings and periodic points of type II in this Berkovich space).

Remark 4. While we provide lower bounds on max
{
M

(1)
f ,M

(2)
f

}
in terms of Mf ,

with K an algebraically closed valued field of characteristic 0 and f ∈ Polyd(K), it
is not difficult to prove reverse inequalities. In fact, for every p ≥ 1, one can easily
establish an upper bound on M

(p)
f in terms of Mf , with K an algebraically closed

valued field of characteristic 0 and f ∈ Polyd(K) (see Appendix A for details).

Remark 5. Actually, one can prove that, if (fn)n≥0 is any sequence of elements of
Polyd(C) that degenerates in Pd(C), then lim

n→+∞
M

(2)
fn

= +∞. Furthermore, under

the hypotheses of Theorem B, one can show that M (2)
f ≥ Mf if Mf > 0.

1.2. Determination of generic conjugacy classes of polynomial maps by
their multipliers at their small cycles. It is natural to ask how many polyno-
mial maps have the same multipliers, up to conjugation.

Fujimura showed in [Fuj07] that the induced morphism Mult(1)
d : Pd → Σ(1)

d has
degree (d− 2)! (see also [Sug17] and [Sug23]). Thus, generically, there are exactly
(d− 2)! elements of Pd(C) that have the same multiset of multipliers at their fixed
points. Here, we prove that a generic element of Pd(C) is uniquely determined by
its multipliers at its cycles with periods 1 and 2.

Theorem C. Assume that d ≥ 2 is an integer. Then there is a nonempty Zariski-
open subset U of Pd such that each [f ] ∈ U(C) is the unique [g] ∈ Pd(C) such that
Λ(1)

g = Λ(1)
f and Λ(2)

g = Λ(2)
f . Moreover, if d ∈ {2, 3}, then each [f ] ∈ Pd(C) is the

unique [g] ∈ Pd(C) such that Λ(1)
g = Λ(1)

f .

In other words, Theorem C states that the morphism Mult(2)
d is birational onto

its image Σ(2)
d . This proves a conjecture made by Hutz and Tepper in [HT13], who

had checked it when d ∈ {2, 3, 4, 5}. This also strengthens a recent result obtained
by Ji and Xie in [JX24] asserting that Mult(P )

d is birational onto its image Σ(P )
d for

some integer P ≥ 1.

Remark 6. In general, there may exist distinct elements [f ], [g] ∈ Pd(C) such that
Λ(1)

f = Λ(1)
g and Λ(2)

f = Λ(2)
g . For d = 4, we can describe precisely when this occurs

(see Appendix B).

1.3. Known results in the case of rational maps. The algebraic group PSL2
of Möbius transformations acts on the space Ratd of rational maps of degree d by
conjugation. The quotient Md forms an affine variety over Q of dimension 2d− 2
called the moduli space of rational maps of degree d. As in the polynomial setting,
for each P ≥ 1, the elementary symmetric functions of the multipliers at the cycles

with period p ∈ {1, . . . , P} define a morphism M̂ult
(P )
d : Md →

P∏
p=1

AN̂
(p)
d .



6 VALENTIN HUGUIN

Milnor showed in [Mil93] that the morphism M̂ult
(1)
2 given by the multipliers of

quadratic rational maps at the fixed points is an isomorphism onto its image Σ̂(1)
2 .

Unlike the case of polynomial maps, if d ≥ 4, then the morphism M̂ult
(P )
d is not

proper for any P ≥ 1. For example, if d is a perfect square, taking flexible Lattès
maps, one can find degenerating sequences in Md(C) whose elements all have the
same multisets of multipliers for each period. As another example, first examined
by McMullen in [McM88], the sequence (fn)n≥1 of elements of Rat5(C) defined by
fn(z) = z2 + 1

nz3 degenerates in M5(C) and has uniformly bounded multipliers for
each period. We refer to [Luo22] for a description of the hyperbolic components of
Md(C) containing degenerating sequences with uniformly bounded multipliers for
each period. We also refer to [Fav24] and [Gon24] for very recent results about the
behavior of multipliers under degeneration in Md(C).

Now, denote by Ld ⊆ Md the locus of conjugacy classes of flexible Lattès maps
of degree d. Note that Ld is empty if d is not a perfect square, Ld is an irreducible
curve if d is an even square and Ld is the union of two irreducible curves if d is an
odd square (see [Mil06]). McMullen showed that, aside from flexible Lattès maps,
any conjugacy class of rational maps of degree d is determined up to finitely many
choices by its multiplier spectrum. Thus, McMullen established the following:
Theorem 7 ([McM87, Corollary 2.3]). There exists an integer P ≥ 1 such that the
restriction of M̂ult

(P )
d to Md \ Ld is a quasifinite morphism.

In [GOV20], Gauthier, Okuyama and Vigny exhibited some integer P ≥ 1 as in
Theorem 7 that can be explicitly computed from quantities related to bifurcations.
In addition, Ji and Xie established in [JX23] that, aside from flexible Lattès maps,
any conjugacy class of rational maps of degree d is already determined up to only
finitely many choices by its multisets of moduli of multipliers for each period.

Very recently, Ji and Xie also showed that a generic conjugacy class of rational
maps of degree d is uniquely determined by its multiplier spectrum.
Theorem 8 ([JX24, Theorem 1.3]). There exists an integer P ≥ 1 such that the
morphism M̂ult

(P )
d is birational onto its scheme-theoretic image Σ̂(P )

d .
Moreover, Ji and Xie conjectured that Theorem C also holds for rational maps

or, equivalently, that the morphism M̂ult
(2)
d is birational onto its image Σ̂(2)

d . This
conjecture was proved for cubic rational maps by Gotou in [Got23].

1.4. Outline of the paper. For the reader’s convenience, the sections are mostly
independent from each other.

In Section 2, we show that the moduli space Pd exists as a geometric quotient,
we provide a precise definition of the multiplier spectrum morphisms Mult(P )

d , with
P ≥ 1, and we examine the cases of quadratic and cubic polynomials. In Section 3,
we prove Theorem B in the complex setting and we derive Corollaries A.1 and A.2
from Theorem A. In Section 5, we prove Theorem C. In Appendix A, we obtain a
few additional estimates on absolute values of multipliers of polynomial maps. In
Appendix B, we discuss isospectral polynomial maps and we describe the pairs of
quartic polynomials that have the same multipliers for periods 1 and 2.
Acknowledgments. The author would like to thank Xavier Buff for helpful discus-
sions, and in particular for stating a two-islands lemma. The author would like to
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thank Charles Favre for inquiring about Theorem A, which was the initial motiva-
tion for this paper, and for suggesting to investigate the non-Archimedean setting.
The author would also like to thank Igors Gorbovickis for helpful discussions.

2. Moduli spaces of polynomial maps and multiplier spectrum
morphisms

Throughout this section, we fix an integer d ≥ 2.

2.1. Moduli spaces of polynomial maps. First, let us present the space Pd of
polynomial maps of degree d modulo conjugation by an affine transformation, and
specifically let us describe its algebraic and complex analytic structures. Here, we
shall elaborate on the similar discussion in [FG22, Section 2.1].

We shall start by showing that this space Pd exists as a geometric quotient and
affine variety over Q. The analogous statement about the space Md of all rational
maps of degree d modulo conjugation by a Möbius transformation was obtained by
Silverman in [Sil98] by using the geometric invariant theory developed by Mumford
in [MFK94].

As we work over a non-algebraically closed field, we shall first briefly recall some
material from algebraic geometry. For more details, we refer the reader to [Mil17],
[MFK94] and [Poo17].

Here, we call variety over Q any scheme X that is geometrically reduced, sepa-
rated and of finite type over Q. For each variety X over Q and each commutative
Q-algebra R, we denote by X(R) the set of R-valued points of X. For each n ≥ 1,
we denote by An the affine space of dimension n over Q.

Here, we call algebraic group over Q any variety G over Q together with a point
e ∈ G(Q) and morphisms m : G×G → G and inv : G → G of varieties over Q that
satisfy the usual group axioms, where e, m and inv represent the identity element,
the group law and the inversion, respectively. Given any algebraic group G over Q
and any commutative Q-algebra R, the set G(R) has a natural group structure.

Given an algebraic group G over Q and a variety X over Q, we call action of G
on X any morphism θ : G×X → X of varieties over Q such that the induced map
θ : G(R) ×X(R) → X(R) is a group action for each commutative Q-algebra R.

Suppose that G is an algebraic group over Q, X is a variety over Q and G acts
on X via a morphism θ : G×X → X. For each commutative Q-algebra R, denote
here by (g, x) 7→ g � x the induced group action θ : G(R) ×X(R) → X(R). Given a
variety Z over Q, we say that a morphism Ψ: X → Z is invariant under the action
θ if, for every commutative Q-algebra R, we have Ψ(g � x) = Ψ(x) for all g ∈ G(R)
and all x ∈ X(R). In fact, given an algebraically closed field K of characteristic 0,
any morphism Ψ: X → Z, with Z a variety over Q, is invariant under θ if and only
if Ψ(g � x) = Ψ(x) for all g ∈ G(K) and all x ∈ X(K). If X is affine, we denote by
Q[X]G the commutative Q-algebra of all regular functions on X that are invariant
under θ when viewed as morphisms from X to A1.

Suppose again that some algebraic group G over Q acts on a variety X over Q.
Here, we call geometric quotient of X by G any variety X/G over Q together with
a morphism π : X → X/G that satisfies the following conditions:

(1) for any algebraically closed field K of characteristic 0, we have

(X/G)(K) = X(K)/G(K) ,
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in the sense that the induced map π : X(K) → (X/G)(K) is surjective and
its fibers are precisely the orbits {g � x : g ∈ G(K)}, with x ∈ X(K);

(2) the space X/G has the quotient topology: any subset U of X/G is open if
and only if π−1(U) is an open subset of X;

(3) for every open subset U of X/G, each regular function ψ on π−1(U) that
is invariant under the induced action of G on π−1(U) factors as ψ = ψ ◦ π,
with ψ a regular function on U .

If a variety X/G over Q with a morphism π : X → X/G is a geometric quotient of
X by G, then it is also a categorical quotient: each invariant morphism Ψ: X → Z,
with Z a variety over Q, factors as Ψ = Ψ ◦ π in a unique way, with Ψ: X/G → Z
a morphism. In particular, a geometric quotient of X by G (if it exists) is unique,
up to isomorphism.

We shall now state general results about existence of geometric quotients. First,
we have the well-known result below about geometric quotients of affine varieties
by finite algebraic groups. We omit here the proof and refer to [SGA70, Exposé V,
Théorème 4.1] for a more general statement.

Lemma 9. Suppose that G is some finite algebraic group over Q that acts on an
affine variety X over Q. Then Q[X]G is a finitely generated commutative Q-algebra.
Moreover, the affine variety X/G over Q such that Q[X/G] = Q[X]G together with
the morphism π : X → X/G induced by the inclusion Q[X]G ⊆ Q[X] is a geometric
quotient of X by G. Furthermore, π is a finite morphism.

Now, suppose that an algebraic group G over Q acts on a variety X over Q and
Y is a closed subvariety of X. We call stabilizer of Y the algebraic subgroup H of
G such that H(K) = {g ∈ G(K) : g � Y (K) ⊆ Y (K)}, where K is any algebraically
closed field of characteristic 0. Note that the action of G on X yields an action of
H on Y . If X is affine and H is finite, then a geometric quotient Y/H of Y by H
exists by Lemma 9. Under some additional assumption implying that every orbit
{g � x : g ∈ G(K)}, with x ∈ X(K), has a nonempty intersection with Y (K), where
K is any algebraically closed field of characteristic 0, a geometric quotient X/G of
X by G also exists and X/G ∼= Y/H. More precisely, we have the following result.
We omit the proof and refer to [SGA70, Exposé V, Lemme 6.1] for a more general
statement expressed in terms of groupoids.

Lemma 10. Suppose that G is some algebraic group over Q that acts on an affine
variety X over Q via a morphism θ : G×X → X. Also assume that there exists a
closed subvariety Y of X such that the induced morphism θ : G× Y → X is finite,
flat and surjective. Then the stabilizer H of Y is finite and the closed immersion
ı : Y ↪→ X induces an isomorphism ı∗ : Q[X]G → Q[Y ]H of Q-algebras. Therefore,
a geometric quotient Y/H of Y by H exists, Q[X]G is a finitely generated commu-
tative Q-algebra and the affine variety X/G over Q such that Q[X/G] = Q[X]G is
isomorphic to Y/H. Furthermore, X/G together with the morphism π : X → X/G
induced by the inclusion Q[X]G ⊆ Q[X] is a geometric quotient of X by G.

We now turn to the construction of the moduli space Pd of polynomial maps of
degree d. Consider the space

Polyd =
{
adz

d + · · · + a1z + a0 : ad ̸= 0
}
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of all polynomial maps of degree d. Identifying a polynomial with its coefficients,
Polyd is naturally an affine variety over Q such that

Q [Polyd] = Q
[
a0, a1, . . . , ad, a

−1
d

]
.

Also, the space Aff = {αz + β : α ̸= 0} of all affine transformations is an algebraic
group over Q under composition. Moreover, Aff acts on Polyd by conjugation, via
ϕ � f = ϕ ◦ f ◦ ϕ−1. We shall prove the existence of some geometric quotient Pd of
Polyd by Aff, which is necessarily unique up to isomorphism.

Remark 11. As the algebraic group Aff is not reductive, one cannot directly apply
the geometric invariant theory developed in [MFK94] to prove that there exists a
geometric quotient Pd of Polyd by Aff.

Now, consider the space
Polymc

d =
{
zd + bd−2z

d−2 + · · · + b1z + b0
}

of all monic centered polynomial maps of degree d. Note that Polymc
d is naturally

a closed subvariety of Polyd. Moreover, its stabilizer for the action of Aff on Polyd

by conjugation is the algebraic subgroup µd−1 =
{
ω : ωd−1 = 1

}
of Aff, under the

identification of ω ∈ µd−1 with ωz ∈ Aff. Thus, we have an induced action of µd−1
on Polymc

d by conjugation, which is given by

ω �

zd +
d−2∑
j=0

bjz
j

 = zd +
d−2∑
j=0

ω1−jbjz
j .

Moreover, since µd−1 is finite and Polymc
d is affine, the Q-algebra Q [Polymc

d ]µd−1 is
finitely generated and the affine variety Pmc

d over Q such that
Q [Pmc

d ] = Q [Polymc
d ]µd−1

together with the natural morphism πmc
d : Polymc

d → Pmc
d is a geometric quotient

of Polymc
d by µd−1, according to Lemma 9.

Finally, we shall apply Lemma 10 to prove the existence of a geometric quotient
Pd

∼= Pmc
d of Polyd by Aff. To do so, let us first prove the statement below, which

implies the well-known fact that each polynomial of degree d over an algebraically
closed field of characteristic 0 is conjugate to a monic centered polynomial. Here,
we denote by θ : Aff × Polymc

d → Polyd the morphism induced by the action of Aff
on Polyd by conjugation.

Claim 12. The morphism θ : Aff × Polymc
d → Polyd is finite, flat and surjective.

Proof. For simplicity, write
R = Q [Polyd] = Q

[
a0, a1, . . . , ad, a

−1
d

]
and

S = Q [Aff × Polymc
d ] = Q

[
α, α−1, β, b0, . . . , bd−2

]
.

Also denote by K an algebraic closure of the field of fractions Q (Polyd) of R. For
each ξ ∈ K such that ξd−1 = ad, we have(

ξz + ad−1ξ

d · ad

)
�

d∑
j=0

ajz
j = zd +

d−2∑
j=0

B
(ξ)
j zj ∈ Polymc

d (Rξ) ,

with
Rξ = Q

[
a0, . . . , ad−1, ξ, ξ

−1] and B
(ξ)
0 , . . . , B

(ξ)
d−2 ∈ Rξ ,
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and hence (
1
ξ
z − ad−1

d · ad

)
�

zd +
d−2∑
j=0

B
(ξ)
j zj

 =
d∑

j=0
ajz

j .

In addition, for each j ∈ {0, . . . , d− 2} and all ξ1, ξ2 ∈ K such that ξd−1
1 = ad and

ξd−1
2 = ad, we have Hξ1,ξ2

(
B

(ξ1)
j

)
= B

(ξ2)
j , where Hξ1,ξ2 : Rξ1 → Rξ2 is the unique

Q-algebra homomorphism such that Hξ1,ξ2 (ak) = ak for all k ∈ {0, . . . , d− 1} and
Hξ1,ξ2 (ξ1) = ξ2. Therefore, for each j ∈ {0, . . . , d− 2}, the polynomial

Qj(T ) =
∏

ξ∈K, ξd−1=ad

(
T −B

(ξ)
j

)
lies in R[T ]. For j ∈ {0, . . . , d − 2}, define Pj = θ∗ (Qj) ∈ S[T ], where θ∗ : R → S
denotes the Q-algebra homomorphism induced by θ : Aff × Polymc

d → Polyd. Now,
consider the closed subvariety Z of Aff × Polymc

d given by

Z =
{
αd−1 = θ∗

(
1
ad

)}
∩
{
β = θ∗

(
−ad−1

d · ad

)}
∩

d−2⋂
j=0

{Pj (bj) = 0} .

Then the morphism θ : Z → Polyd is finite and surjective. In particular, we have
dim(Z) ≥ dim (Polyd) = d+ 1 = dim (Aff × Polymc

d ) ,
and hence Z = Aff × Polymc

d since Aff × Polymc
d is irreducible. Thus, the morphism

θ : Aff × Polymc
d → Polyd is both finite and surjective. Finally, as Aff × Polymc

d and
Polyd are both smooth over Q, the morphism θ is also flat by the miracle flatness
theorem (see [Mat86, Theorem 23.1]). Thus, the claim is proved. □

By Lemma 10 and Claim 12, the closed immersion ı : Polymc
d ↪→ Polyd induces

an isomorphism ı∗ : Q [Polyd]Aff → Q [Polymc
d ]µd−1 of Q-algebras, and thus we have

the commutative diagram below.

Q [Polyd]Aff Q [Polymc
d ]µd−1

Q [Polyd] Q [Polymc
d ]

∼
ı∗

ı∗

Moreover, the affine variety Pd over Q given by Q [Pd] = Q [Polyd]Aff together with
the morphism πd : Polyd → Pd induced by the inclusion Q [Polyd]Aff ⊆ Q [Polyd] is
a geometric quotient of Polyd by Aff. This variety Pd has dimension d − 1 and is
called the moduli space of polynomial maps of degree d. We have the commutative
diagram below.

Polymc
d Polyd

Pmc
d Pd

ı

∼

πmc
d πd
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For f ∈ Polyd(R), with R a commutative Q-algebra, we write [f ] = πd(f) ∈ Pd(R).

Remark 13. One can explicitly describe the inverse of the Q-algebra isomorphism
ı∗ : Q [Polyd]Aff → Q [Polymc

d ]µd−1 . Suppose that ψ ∈ Q [Polymc
d ]µd−1 . Write

Q [Polyd] = Q
[
a0, a1, . . . , ad, a

−1
d

]
and Q [Polymc

d ] = Q [b0, . . . , bd−2] ,

denote by Q (Polyd) the algebraic closure of the field of fractions of Q [Polyd] and
choose any ξ ∈ Q (Polyd) such that ξd−1 = ad. Now, define

φ = ψ
(
B

(ξ)
0 , . . . , B

(ξ)
d−2

)
,

with B
(ξ)
0 , . . . , B

(ξ)
d−2 ∈ Q (Polyd) as in the proof of Claim 12. Then φ ∈ Q [Polyd].

Moreover, φ is the unique element of Q [Polyd]Aff such that ı∗(φ) = ψ.

Remark 14. For every field K of characteristic 0, the base change AffK of Aff to K
also acts on the base change (Polyd)K of Polyd to K by conjugation, and the base
change (Pd)K of Pd to K is a geometric quotient of (Polyd)K by AffK .

Finally, we shall briefly describe the complex analytic structure of Pd(C). The
set Pd(C) of complex polynomial maps of degree d modulo conjugation by complex
affine transformations is naturally a complex analytic space of dimension d− 1. In
fact, since Polyd(C) ∼= Cd × C∗ is a complex manifold and the action of Aff(C) on
Polyd(C) by conjugation is proper, faithful and its stabilizers are all finite, Pd(C)
is a complex orbifold. Moreover, Pmc

d (C) is also a complex orbifold, and we have a
natural biholomorphism Pd(C) ∼= Pmc

d (C). The complex topology of Pd(C) is the
quotient topology: any subset U of Pd(C) is open if and only if π−1

d (U) is an open
subset of Polyd(C). We refer to [Car22] for further information about orbifolds.

We say that a sequence (fn)n≥0 of elements of Polyd(C) degenerates in Pd(C) if,
for every compact subset K of Pd(C), we have [fn] ∈ Pd(C) \K for all sufficiently
large n. Thus, any sequence (fn)n≥0 of elements of Polyd(C) degenerates in Pd(C)
if and only if there does not exist any sequence (ϕn)n≥0 of elements of Aff(C) such
that (ϕn � fn)n≥0 has a convergent subsequence in Polyd(C). We can also express
degeneration in Pd(C) in terms of maximal escape rates. Explicitly, any sequence
(fn)n≥0 of elements of Polyd(C) degenerates in the moduli space Pd(C) if and only
if lim

n→+∞
Mfn

= +∞ (see [BH88, Proposition 3.6]).

2.2. Multiplier spectrum morphisms. Now, let us give a precise definition of
the morphisms Mult(P )

d , with P ≥ 1. To do this, we shall first recall the notions of
dynatomic and multiplier polynomials associated with a polynomial map. We refer
the reader to [MP94] and [VH92] for further details.

Suppose that R is any Q-algebra that is an integral domain and f ∈ Polyd(R).
Then there is a unique sequence

(
Φ(p)

f

)
p≥1

of elements of R[z] such that, for each
p ≥ 1, we have

f◦p(z) − z =
∏
k|p

Φ(k)
f (z) .
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For p ≥ 1, the polynomial Φ(p)
f ∈ R[z] is called the pth dynatomic polynomial of f .

For every p ≥ 1, we have deg
(

Φ(p)
f

)
= ν

(p)
d , where

ν
(p)
d =

∑
k|p

µ
(p
k

)
dk

and µ : Z≥1 → {−1, 0, 1} denotes the Möbius function.
The result below gives the relation between the periodic points of a polynomial

map and its dynatomic polynomials.

Proposition 15 ([MS95, Proposition 3.2]). Assume that R is any Q-algebra that
is an integral domain, f ∈ Polyd(R) and p ≥ 1. Then z0 ∈ R is a root of Φ(p)

f

if and only if either z0 is a periodic point for f with period p or z0 is a periodic
point for f with period a proper divisor k of p and multiplier a primitive p

k th root
of unity.

Suppose that R is any Q-algebra that is an integral domain and f ∈ Polyd(R).
For every p ≥ 1, there exists a unique monic polynomial χ(p)

f ∈ R[λ] such that

χ
(p)
f (λ)p = a

−m
(p)
d

d resz

(
Φ(p)

f (z), λ− (f◦p)′ (z)
)

,

where ad ∈ R∗ denotes the leading coefficient of f , resz denotes the resultant with
respect to z and

m
(p)
d =

{
d− 1 if p = 1
ν

(p)
d

(dp−1)
d−1 if p ≥ 2

.

For p ≥ 1, the polynomial χ(p)
f ∈ R[λ] is called the pth multiplier polynomial of f .

For every p ≥ 1, we have deg
(
χ

(p)
f

)
= N

(p)
d , where N (p)

d = ν
(p)
d

p .
For an algebraically closed field K of characteristic 0, f ∈ Polyd(K) and p ≥ 1,

we denote by Λ(p)
f ∈ KN

(p)
d /S

N
(p)
d

the multiset of roots of χ(p)
f .

Using Proposition 15, we immediately obtain the result below, which relates the
multiplier polynomials of a polynomial map to its multipliers.

Proposition 16. Assume that K is an algebraically closed field of characteristic
0, f ∈ Polyd(K) and p ≥ 1. Then λ ∈ K lies in Λ(p)

f if and only if at least one of
the following two conditions is satisfied:

• λ is a multiplier of f at a cycle with period p;
• λ = 1 and f has a cycle with period a proper divisor k of p and multiplier

a primitive p
k th root of unity.

In particular, if f has no parabolic cycle with period dividing p, then Λ(p)
f consists

precisely of the multipliers of f at its cycles with period p.

Now, consider the generic polynomial

f(z) =
d∑

j=0
ajz

j ∈ Polyd (Q [Polyd]) .
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For p ≥ 1, write

χ
(p)
f (λ) = λN

(p)
d +

N
(p)
d∑

j=1
(−1)jσ

(p)
d,jλ

N
(p)
d

−j ∈ Q [Polyd] [λ] .

Specializing, for every Q-algebra R that is an integral domain, every f ∈ Polyd(R)
and every p ≥ 1, we have

χ
(p)
f (λ) = λN

(p)
d +

N
(p)
d∑

j=1
(−1)jσ

(p)
d,j(f)λN

(p)
d

−j .

Thus, for every algebraically closed field K of characteristic 0, every f ∈ Polyd(K)
and every p ≥ 1, the σ(p)

d,j (f), with j ∈
{

1, . . . , N (p)
d

}
, are the elementary symmetric

functions of the elements of Λ(p)
f . As the multiplier is invariant under conjugation,

it follows that the regular function σ
(p)
d,j ∈ Q [Polyd] is invariant under the action of

Aff on Polyd by conjugation for each p ≥ 1 and each j ∈
{

1, . . . , N (p)
d

}
. Therefore,

for every p ≥ 1 and every j ∈
{

1, . . . , N (p)
d

}
, there exists a unique regular function

σ
(p)
d,j ∈ Q [Pd] such that σ(p)

d,j ([f ]) = σ
(p)
d,j(f) for each commutative Q-algebra R and

each f ∈ Polyd(R). For P ≥ 1, we define the multiplier spectrum morphism

Mult(P )
d =

((
σ

(1)
d,j

)
1≤j≤N

(1)
d

, . . . ,
(
σ

(P )
d,j

)
1≤j≤N

(P )
d

)
: Pd →

P∏
p=1

AN
(p)
d .

For P ≥ 1, we denote by Σ(P )
d the scheme-theoretic image of Mult(P )

d , which equals

the Zariski-closure of Mult(P )
d (Pd(Q)) in

P∏
p=1

AN
(p)
d .

Finally, we shall recall a few facts about the multipliers at the fixed points. For
every algebraically closed field K of characteristic 0 and every f ∈ Polyd(K) such
that λ ̸= 1 for all λ ∈ Λ(1)

f , we have∑
λ∈Λ(1)

f

1
1 − λ

= 0 .

The relation above is known as the holomorphic fixed-point formula. Therefore, in
Q [Pd], we have

d+
d∑

j=1
(−1)j(d− j)σ(1)

d,j = 0 .

In fact, denoting by s1, . . . , sd the standard coordinates on Ad, we have

Σ(1)
d =

d+
d∑

j=1
(−1)j(d− j)sj = 0

 ⊆ Ad ,

and Fujimura showed in [Fuj07] that the morphism Mult(1)
d : Pd → Σ(1)

d has degree
(d− 2)!. In addition, Fujimura also proved that the morphism Mult(1)

d : Pd → Σ(1)
d

is neither surjective nor quasifinite when d ≥ 4. We refer the reader to Sugiyama’s
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articles [Sug17] and [Sug23] for the exact number of conjugacy classes [f ] ∈ Pd(C)
that satisfy Λ(1)

f = Λ, for each Λ ∈ Cd/Sd such that λ ̸= 1 for all λ ∈ Λ.

2.3. The cases of quadratic and cubic polynomial maps. To conclude this
section, let us briefly describe the moduli spaces P2 and P3 of quadratic and cubic
polynomial maps, respectively, and show that the morphisms Mult(1)

2 and Mult(1)
3

induced by the multipliers at the fixed points are isomorphisms onto their images.
The results presented here are well known.

Example 17. We first study the case of quadratic polynomial maps. Since we have
a natural isomorphism P2 ∼= Pmc

2 , we may restrict our attention to monic centered
quadratic polynomials. As µ1 = {1} is the trivial algebraic group, we have

Pmc
2

∼= Polymc
2 =

{
z2 + a0

}
and Q [Pmc

2 ] = Q [Polymc
2 ] = Q [a0] .

Now, computing the polynomial χ(1)
f ∈ Q [Pmc

2 ] [λ] for f(z) = z2 + a0 ∈ Polymc
2 , we

obtain
σ

(1)
2,1 = 2 ∈ Q [Pmc

2 ] and σ
(1)
2,2 = 4a0 ∈ Q [Pmc

2 ]
via the natural isomorphism P2 ∼= Pmc

2 . Therefore, we have

Q
[
Σ(1)

2

]
= Q

[
σ

(1)
2,1, σ

(1)
2,2

]
= Q [a0] = Q [Pmc

2 ] ,

where Σ(1)
2 denotes the image of the morphism Mult(1)

2 =
(
σ

(1)
2,1, σ

(1)
2,2

)
: Pmc

2 → A2.

Thus, Mult(1)
2 induces an isomorphism from P2 onto its image Σ(1)

2 .

Example 18. We now turn to the case of cubic polynomial maps. A similar
discussion can be found in [Mil92, Appendix A]. As P3 ∼= Pmc

3 , we restrict our
attention to monic centered cubic polynomials. Recall that

Polymc
3 =

{
z3 + a1z + a0

}
and that the algebraic group µ2 = {±1} acts on Polymc

3 by

ω �
(
z3 + a1z + a0

)
= z3 + a1z + ωa0 .

Therefore, we have

Q [Pmc
3 ] = Q [Polymc

3 ]µ2 = Q[α, β] , with α = a1 and β = a2
0 .

Now, for simplicity, write sj = σ
(1)
3,j for j ∈ {1, 2, 3}. Computing χ(1)

f ∈ Q [Pmc
3 ] [λ]

for f(z) = z3 + a1z + a0 ∈ Polymc
3 , we obtain

s1 = −3α+ 6 , s2 = −6α+ 9 and s3 = 4α3 − 12α2 + 9α+ 27β

via the natural isomorphism P3 ∼= Pmc
3 , which yields

α = −1
3 s1 + 2 and β = 4

729s
3
1 − 4

81s
2
1 + 1

9s1 + 1
27s3 − 2

27 .

Therefore, we have

Q
[
Σ(1)

3

]
= Q [s1, s2, s3] = Q[α, β] = Q [Pmc

3 ] ,

where Σ(1)
3 denotes the image of the morphism Mult(1)

3 = (s1, s2, s3) : Pmc
3 → A3.

Thus, Mult(1)
3 induces an isomorphism from P3 onto its image Σ(1)

3 .
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3. Multipliers at small cycles and maximal escape rates for complex
polynomial maps

In this section, we shall first prove Theorem B in the complex case. Our proof
is inspired by the article [DM08] by DeMarco and McMullen. It relies on a combi-
natorial argument and on an inequality relating the modulus of the multiplier at a
repelling periodic point and the modulus of some annulus. As the latter is already
known, the main novelty here is a combinatorial result concerning sublevel sets of
the Green function of a polynomial map with disconnected Julia set. Nonetheless,
we provide a detailed proof of Theorem B in the complex setting for completeness
and to exhibit the similarity with our proof in the non-Archimedean case. Finally,
we shall close this section by deriving Corollaries A.1 and A.2 from Theorem A.

We fix here an integer d ≥ 2. In this section and in the next one, we sometimes
use the letter e to denote the degree of certain maps, but we never write e for the
exponential function, which we denote by exp.

3.1. The Green function of a complex polynomial map. First, let us recall
some well-known facts regarding the Green function of a complex polynomial map.
We refer to [CG93, Chapter III, Section 4] and [DH84, Exposé VIII, Section I] for
further information.

Suppose that f ∈ Polyd(C). Recall that the filled Julia set Kf of f is given by

Kf =
{
z ∈ C : sup

n≥0
|f◦n(z)| < +∞

}
.

Also recall that the Green function gf : C → R≥0 of f is given by

gf (z) = lim
n→+∞

1
dn

log+ |f◦n(z)| .

This map gf is well defined, continuous and subharmonic on C and it is harmonic
on C \ Kf . Moreover, we have gf ◦ f = d · gf and gf (z) = log|z| +O(1) as z → ∞,
and in particular {gf = 0} = Kf . Define the maximal escape rate Mf of f by

Mf = max {gf (c) : c ∈ C, f ′(c) = 0} .

It follows from the Riemann–Hurwitz formula that the set Kf is connected if and
only if Mf = 0 or, equivalently, if and only if the critical points for f all lie in Kf

(see [Bea91, Theorem 9.5.1]).
Note that f is conjugate to z 7→ zd near infinity by Böttcher’s theorem since ∞

is a fixed point for f with local degree d, viewing f as a rational map f : Ĉ → Ĉ.
In fact, there exists a biholomorphism

ϕf : {gf > Mf } → C \D (0, exp (Mf ))

such that lim
z→∞

ϕf (z) = ∞ and ϕf ◦ f = ϕd
f . This biholomorphism ϕf is unique up

to multiplication by a (d− 1)th root of unity and is called a Böttcher coordinate of
f at infinity. Moreover, we have gf = log |ϕf |.

Now, we say that a compact subset K of C is full if the set C \K is connected.
It follows from the maximum principle that {gf ≤ η} is a full compact subset of C
for all η ∈ R≥0. In addition, {gf < η} is the interior of {gf ≤ η} for all η ∈ R>0 as
gf has no local maximum on C \ Kf . Therefore, for every η ∈ R>0, the connected
components of {gf < η} are all bounded simply connected subsets of C. Moreover,
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for every η ∈ R>0, the connected components of {gf < η} all intersect Kf since gf

has no local minimum on C \ Kf .
For each η ∈ [Mf ,+∞), the set {gf ≤ η} is connected as Ĉ \ {gf ≤ η} is biholo-

morphic to Ĉ \D (0, exp(η)) under any Böttcher coordinate ϕf of f at infinity. As
a result, {gf < η} is also connected for all η ∈ (Mf ,+∞). In contrast, we have the
following:

Lemma 19. Suppose that f ∈ Polyd(C) has a disconnected filled Julia set Kf , and
define C ≥ 1 to be the number of critical points c ∈ C for f such that gf (c) = Mf ,
counting multiplicities. Then {gf < Mf } has exactly C + 1 connected components.

Proof. Denote here by U1, . . . , UN the connected components of {gf < Mf }, with
N ≥ 1. For j ∈ {1, . . . , N}, denote by Cj ≥ 0 the number of critical points for f in

Uj , counting multiplicities. Note that
N∑

j=1
Cj = d− 1 − C. Now, as

{gf < Mf } = f−1 ({gf < d ·Mf }) ,
the map f : Uj → {gf < d ·Mf } is proper of degree dj ≥ 1 for each j ∈ {1, . . . , N},

and we have d =
N∑

j=1
dj . In addition, for each j ∈ {1, . . . , N}, we have dj = Cj + 1

by the Riemann–Hurwitz formula because Uj is simply connected by the previous
discussion. Therefore, we have

d =
N∑

j=1
(Cj + 1) = d− 1 − C +N ,

and hence N = C + 1. Thus, the lemma is proved. □

Remark 20. In fact, we shall only use the well-known fact that, if f ∈ Polyd(C) has
a disconnected filled Julia set Kf , then {gf < Mf } is disconnected.

3.2. A combinatorial argument. Now, let us count the critical points in certain
sublevel sets of the Green function to obtain a result implying that the Julia set of
any polynomial map either is connected or has a connected component consisting
only of a periodic point with period 1 or 2. We shall present this as a consequence
of a general two-islands lemma.

To obtain our two-islands lemma, we shall prove a result regarding preimages of
simply connected domains under holomorphic maps. To do so, we shall first prove
the general fact below.

Lemma 21. Suppose that X is a topological space that is both connected and locally
connected, A is a connected subset of X and B is a clopen subset of X \ A. Then
A ∪B is connected.

Proof. Note that the desired result is immediate if A = ∅. From now on, suppose
that A ̸= ∅. Then it suffices to prove that A ∪ C is connected for each connected
component C of B. Thus, assume that C is a connected component of B. Denote
by D the connected component of X \ A containing C. Then B ∩D = D because
B ∩D is a nonempty clopen subset of D and D is connected, which yields D ⊆ B,
and hence D = C. Thus, C is a connected component of X \A, and in particular

∂C ⊆ ∂(X \A) = ∂A
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since X is locally connected. Furthermore, ∂C ̸= ∅ since, otherwise, C would be a
nonempty clopen subset of X contained in X \ A. Choose x ∈ ∂C. If x ∈ A, then
x ∈ A ∩C. Now, suppose that x ∈ X \A. Denote by C ′ the connected component
of X \A containing x. Then C ∪ C ′ is connected because C and C ′ are connected
and x ∈ C ∩ C ′, and hence C = C ′. As a result, x ∈ A ∩ C. Thus, we have proved
that A∩C ̸= ∅ or A∩C ̸= ∅. As A and C are connected, it follows that A∪C is
connected. This completes the proof of the lemma. □

Using the previous lemma, we obtain the general result below, which the author
was unable to find in the literature.

Lemma 22. Suppose that U, V are nonempty simply connected open subsets of C
and f : U → C is a holomorphic map. Then every connected component of f−1(V )
is simply connected.

Proof. Note that the desired result is immediate if f is constant. Assume now that
f is not constant. Recall that a connected open subset D of C is simply connected
if and only if Ĉ \D is connected, where Ĉ is the Riemann sphere. Suppose that U0
is a connected component of f−1(V ), and let us show that U0 is simply connected.
Thus, assume that A is a clopen subset of Ĉ \U0 that does not contain ∞, and let
us prove that A = ∅. Note that A \ U is a clopen subset of Ĉ \ U , which does not
contain ∞, and hence A ⊆ U since U ⊆ C is simply connected. Now, define

B = f (A ∪ U0) \ V .

Then B is an open subset of Ĉ \ V since A ∪ U0 = Ĉ \
((

Ĉ \ U0

)
\A
)

is an open
subset of U and the map f is open. Moreover, we have

B = f
(
A \ f−1(V )

)
and A \ f−1(V ) is a compact subset of U since it is closed in Ĉ. It follows that B
is compact, and in particular it is also closed in Ĉ \ V . Therefore, B = ∅ because
V ⊆ C is simply connected and B ⊆ C, and hence A ⊆ f−1(V ). Moreover, A ∪ U0
is connected by Lemma 21. Therefore, A ⊆ U0 since U0 is a connected component
of f−1(V ), and hence A = ∅. This completes the proof of the lemma. □

Finally, counting critical points, we deduce the two-islands lemma below. This
statement, which greatly simplified the author’s exposition, was communicated to
him by Buff. For comparison, we refer the reader to [Ber00] for information about
the classical Ahlfors five-islands theorem.

Lemma 23. Suppose that U, V are nonempty simply connected open subsets of C,
f : U → V is a proper holomorphic map and V1, V2 are disjoint nonempty simply
connected open subsets of V . Then there exist an index j ∈ {1, 2} and a connected
component Uj of f−1 (Vj) such that f induces a biholomorphism from Uj to Vj.

Proof. Denote by e ≥ 1 the degree of f : U → V . For j ∈ {1, 2}, denote by Cj ≥ 0
the number of critical points for f in f−1 (Vj), counting multiplicities. Then

e = C + 1 ≥ C1 + C2 + 1 ≥ 2 min {C1, C2} + 1
by the Riemann–Hurwitz formula, where C ≥ 0 is the number of critical points for
f in U , counting multiplicities. Now, for j ∈ {1, 2}, denote by U (1)

j , . . . , U
(Nj)
j , with

Nj ≥ 1, the connected components of f−1 (Vj). Then, for each j ∈ {1, 2} and each
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ℓ ∈ {1, . . . , Nj}, the map f : U (ℓ)
j → Vj is proper of degree e(ℓ)

j ≥ 1. For j ∈ {1, 2},

we have e =
Nj∑
ℓ=1

e
(ℓ)
j . Moreover, U (ℓ)

j is a simply connected open subset of C for all

j ∈ {1, 2} and all ℓ ∈ {1, . . . , Nj} by Lemma 22. By the Riemann–Hurwitz formula,
it follows that e(ℓ)

j = C
(ℓ)
j + 1, where C(ℓ)

j ≥ 0 is the number of critical points for f
in U

(ℓ)
j , counting multiplicities, for all j ∈ {1, 2} and all ℓ ∈ {1, . . . , Nj}. Thus,

∀j ∈ {1, 2}, e =
Nj∑
ℓ=1

(
C

(ℓ)
j + 1

)
= Cj +Nj .

Therefore, there exists j ∈ {1, 2} such that Cj < Nj as, otherwise, we would have
e ≤ 2 min {C1, C2}. Then C

(ℓ)
j = 0 for some ℓ ∈ {1, . . . , Nj}, and we have e(ℓ)

j = 1.
Thus, f induces a biholomorphism from U

(ℓ)
j to Vj , and the lemma is proved. □

Remark 24. In fact, under the hypotheses of Lemma 23, one of the following two
conditions is satisfied:

(1) there exist an index j ∈ {1, 2} and distinct connected components U (1)
j and

U
(2)
j of f−1 (Vj) that are both mapped biholomorphically onto Vj by f ;

(2) there exist connected components U1 and U2 of f−1 (V1) and f−1 (V2) that
are mapped biholomorphically onto V1 and V2 by f , respectively.

Returning to our proof of Lemma 23, the condition (1) is satisfied if C1 ̸= C2 and
the condition (2) is satisfied if C1 = C2.

Applying the previous lemma to a dynamical setting, we easily obtain the result
below, which is a key ingredient in our proof of Theorem B in the complex case.

Lemma 25. Suppose that f ∈ Polyd(C) has a disconnected filled Julia set Kf .
Then one of the following two conditions is satisfied:

(1) there exists a connected component U of
{
gf <

Mf

d

}
such that f induces

a biholomorphism from U onto the connected component V of {gf < Mf }
containing U ;

(2) for all distinct connected components V, V ′ of {gf < Mf }, there exists a
connected component U of

{
gf <

Mf

d

}
contained in V such that f induces

a biholomorphism from U onto V ′.
In addition, if d ∈ {2, 3}, then there exists a connected component V of {gf < Mf }
such that f induces a biholomorphism from V onto {gf < d ·Mf }.

Proof. If the condition (1) is satisfied, we are done. Now, suppose that this is not
the case, and let us show that the condition (2) is satisfied. Assume that V, V ′ are
two distinct connected components of {gf < Mf }. Then f : V → {gf < d ·Mf } is
a proper map and there is no connected component of

{
gf <

Mf

d

}
contained in V

that is mapped biholomorphically onto V by f . As a result, by Lemma 23, f maps
a connected component of

{
gf <

Mf

d

}
contained in V biholomorphically onto V ′.

Thus, the desired result is proved.
Now, assume that d ∈ {2, 3}. Denote by V1, . . . , VN , with N ≥ 2, the connected

components of {gf < Mf }. For j ∈ {1, . . . , N}, the map f : Vj → {gf < d ·Mf } is
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proper of degree dj ≥ 1. We have d =
N∑

j=1
dj . Therefore, as N ≥ 2 and d ≤ 3, there

exists j ∈ {1, . . . , N} such that dj = 1. Thus, f induces a biholomorphism from Vj

onto {gf < d ·Mf }, and the lemma is proved. □

Remark 26. As the connected components of {gf < η}, with η ∈ R>0, are known to
be simply connected, our proof of Lemma 25 does not actually require Lemma 22
and one could have simply added as an assumption in the statement of Lemma 23
the fact that the connected components of f−1 (Vj), with j ∈ {1, 2}, are all simply
connected. Nonetheless, Lemmas 22 and 23 are of interest in their own right.

Remark 27. Using Remark 24, one can replace the condition (1) in the statement
of Lemma 25 by the following one:

(1’) there exist a connected component V of {gf < Mf } and distinct connected
components U,U ′ of

{
gf <

Mf

d

}
contained in V such that f maps both U

and U ′ biholomorphically onto V .

As a consequence of Lemma 25, we easily obtain the result below, which is not
used in our proof of Theorem B but may be of independent interest.

Proposition 28. Assume that f ∈ Polyd(C) has a disconnected filled Julia set Kf .
Then Kf has a connected component that consists only of a periodic point for f
with period 1 or 2. Furthermore, if d ∈ {2, 3}, then Kf has a connected component
that consists only of a fixed point for f .

Proof. Assume for a moment that the condition (2) of Lemma 25 holds. Denote by
V1, . . . , VN , with N ≥ 2, the connected components of {gf < Mf }. Then there are
connected components U1, U2 of

{
gf <

Mf

d

}
contained in V1, V2, respectively, such

that f induces biholomorphisms from U1 to V2 and from U2 to V1. Define g1 to be
the inverse of f : U1 → V2. Then g1 (U1) is a connected component of

{
gf <

Mf

d2

}
contained in U1 and the map f◦2 : g1 (U1) → V1 is a biholomorphism.

Thus, by Lemma 25, there exist η ∈ R>0, p ∈ {1, 2} and a connect component U
of
{
gf <

η
dp

}
such that f◦p induces a biholomorphism from U onto the connected

component V of {gf < η} containing U , and we can take p = 1 if d ∈ {2, 3}. Now,
denote by g the inverse of f◦p : U → V , and define

S =
⋂

n≥0
g◦n(U) .

Let us show that S is a connected component of Kf , which consists only of a fixed
point for f◦p. Note that S ⊆ Kf because U is bounded. Moreover, S is nonempty
and connected since S =

⋂
n≥0

g◦n
(
U
)

is the intersection of a decreasing sequence of

nonempty, connected and compact subsets of C. Now, denote by C the connected
component of Kf containing S. Then, for every n ≥ 0, we have

f◦pn(C) ⊆ Kf ⊆
{
gf <

η

dp

}
and ∅ ̸= f◦pn(S) ⊆ f◦pn(C) ∩ U ,

and hence f◦pn(C) ⊆ U as f◦pn(C) is connected and U is a connected component
of
{
gf <

η
dp

}
. It follows by induction that

∀n ≥ 0, C = g◦n (f◦pn(C)) ⊆ g◦n(U) .
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Thus, C = S. Now, note that g is contracting with respect to the Poincaré metric
on V by the Schwarz lemma, since U ⋐ V . Therefore, S consists of a single point,
which is necessarily fixed for f◦p because S is invariant under f◦p. This completes
the proof of the proposition. □

Remark 29. Note that, if f ∈ Polyd(C) has a disconnected filled Julia set Kf , then
Kf has uncountably many connected components. In [QY09], Qiu and Yin proved
that, for every f ∈ Polyd(C), all but countably many connected components of Kf

consist of a single point. In contrast, as shown by McMullen in [McM88], there are
rational maps f : Ĉ → Ĉ whose Julia set Jf is disconnected but has no connected
component that consists of a single point. The existence of connected components
of the Julia set consisting of a single point for transcendental maps was studied by
Domínguez in [Dom97] and [Dom98].

Remark 30. In fact, using Remark 27, one can show that, for every f ∈ Polyd(C),
either Kf is connected or Kf has a connected component consisting only of a peri-
odic point for f with period 2.

3.3. Multipliers and maximal escape rates. Here, let us obtain lower bounds
on moduli on multipliers in terms of maximal escape rates. These bounds depend
on combinatorial information regarding sublevel sets of Green functions. A similar
discussion can be found in [DM08, Section 4], where the corresponding results are
stated in terms of trees. Thus, we give details for the reader’s convenience.

First, we shall briefly recall a few necessary elements from conformal geometry.
We say that a Riemann surface A is an annulus if its fundamental group π1(A) is
isomorphic to Z. For every z0 ∈ C and all r,R ∈ R>0, with r < R,

Az0(r,R) = {z ∈ C : r < |z − z0| < R}
is an annulus. In fact, every annulus A is biholomorphic to the punctured disk D∗,
the punctured plane C∗ or the round annulus A0(1, R) for a unique R ∈ (1,+∞).
We call modulus of an annulus A the number

mod(A) =
{

1
2π log(R) if A ∼= A0(1, R), with R ∈ (1,+∞)
+∞ if A ∼= D∗ or C∗ .

We shall only use the following two facts about moduli of annuli:
• If A is a Riemann surface, B is an annulus and f : A → B is a holomorphic

covering map of degree e ≥ 1, then A is an annulus and
mod(B) = e · mod(A) .

• Given an annulus B, we say that a nonempty connected open subset A of
B is a subannulus of B if the inclusion ı : A ↪→ B induces an isomorphism
ı∗ : π1(A) → π1(B). If B is an annulus and A1, . . . , Ar are pairwise disjoint
subannuli of B, with r ≥ 0, then

r∑
j=1

mod (Aj) ≤ mod(B) .

This statement is known as Grötzsch’s inequality.
We refer the reader to [Hub06, Section 3.2] for further details about annuli.

Recall that a compact subset K of C is full if the set C \K is connected. Note
that, if V is a simply connected open subset of C and K is a nonempty, connected
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and full compact subset of V , then V \K is an annulus. Also note that, if W ⊆ V
are simply connected open subsets of C and K ⊆ L are nonempty, connected and
full compact subsets of W , then W \ L is a subannulus of V \K.

We shall crucially use the inequality below, which relates moduli of multipliers
at repelling fixed points to moduli of certain annuli.

Lemma 31. Suppose that U, V are nonempty simply connected open subsets of C
such that U is a full compact subset of V and f : U → V is a biholomorphism.
Then f has a unique fixed point z0 ∈ U and we have

1
2π log |f ′ (z0)| ≥ mod

(
V \ U

)
.

Proof. Set A = V \ U . Note that U, V are biholomorphic to the unit disk D. Now,
denote by g : V → U the inverse of f . By the Schwarz lemma, as U ⋐ V , the map
g is a contraction with respect to the Poincaré metric on V . In particular, g has a
unique fixed point z0 ∈ U , which is necessarily attracting for g. Then z0 is also the
unique fixed point for f and z0 is repelling for f . Now, suppose that α > |f ′ (z0)|.
Then there exists R ∈ R>0 such that |f(z) − z0| ≤ α |z − z0| for all z ∈ D (z0, R).
Since g is contracting with respect to the Poincaré metric on V , there exists N ≥ 0
such that g◦N (V ) ⊆ D (z0, R). Take r ∈ (0, R) such that D (z0, r) ⊆ g◦N (U). Note
that g◦N (A), . . . , g◦n(A) are pairwise disjoint subannuli of g◦N (V ) \ g◦n

(
U
)

with
modulus mod(A) for all n ≥ N . Moreover, for every n ≥ N , we have

D
(
z0,

r

αn−N

)
⊆ g◦(n−N) (D (z0, r)) ⊆ g◦n(U)

since α > 1, and hence g◦N (V ) \ g◦n
(
U
)

is a subannulus of Az0

(
r

αn−N , R
)
. Thus,

by Grötzsch’s inequality, we have

(n−N + 1) mod(A) ≤ mod
(

Az0

( r

αn−N
, R
))

= 1
2π log

(
R

r

)
+ n−N

2π log(α)

for all n ≥ N , which yields mod(A) ≤ 1
2π log(α) by dividing by n − N and letting

n → +∞. Letting α → |f ′ (z0)|, we obtain the desired inequality. Thus, the lemma
is proved. □

Now, we shall prove the result below (compare [DM08, Lemma 4.6]). It is a key
point in our proof of Theorem B in the complex case.

Lemma 32. Suppose that f ∈ Polyd(C) has a disconnected filled Julia set Kf ,
η ∈ [Mf ,+∞), U0, . . . , Up−1 are (not necessarily distinct) connected components of{
gf <

η
dk

}
, with k ≥ 0 and p ≥ 1, V0, . . . , Vp−1 are the connected components of{

gf <
η

dk−1

}
containing U0, . . . , Up−1, respectively, and f induces a biholomorphism

from Uj to Vj+1 (mod p) for all j ∈ {0, . . . , p−1}. Then f◦p has a unique fixed point
z0 ∈ C such that f◦j (z0) ∈ Uj for all j ∈ {0, . . . , p− 1}. Furthermore, we have

log
∣∣(f◦p)′ (z0)

∣∣ ≥ (d− 1)

p−1∑
j=0

1
dj

 η ,

where dj denotes the degree of f◦k : Vj → {gf < d · η} for all j ∈ {0, . . . , p− 1}.

Proof. Denote by gj the inverse of f : Uj → Vj+1 (mod p) for j ∈ {0, . . . , p− 1}, and
define

W = g0 ◦ · · · ◦ gp−1 (V0) .
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Then W,V0 are simply connected open subsets of C such that W is a full compact
subset of V0 and f◦p : W → V0 is a biholomorphism. Therefore, by Lemma 31, the
map f◦p has a unique fixed point z0 ∈ W and we have

log
∣∣(f◦p)′ (z0)

∣∣ ≥ 2πmod
(
V0 \W

)
.

Observe that z0 is the unique fixed point for f◦p that satisfies f◦j (z0) ∈ Uj for all
j ∈ {0, . . . , p− 1}. Thus, it remains to prove the desired inequality. Note that the
g0 ◦ · · · ◦ gj−1

(
Vj \ Uj

)
, with j ∈ {0, . . . , p − 1}, are pairwise disjoint subannuli of

V0 \W . Therefore, by Grötzsch’s inequality, we have

log
∣∣(f◦p)′ (z0)

∣∣ ≥ 2π
p−1∑
j=0

mod
(
Vj \ Uj

)
.

Suppose that j ∈ {0, . . . , p− 1}, and let us show that mod
(
Vj \ Uj

)
≥ 1

2π

(
d−1
dj

)
η.

Define η(0)
j < · · · < η

(Nj)
j , with Nj ≥ 1, by η(0)

j = η
dk and η

(Nj)
j = η

dk−1 and{
η

(1)
j , . . . , η

(Nj−1)
j

}
=
{
gf (γ) : γ ∈ Vj , gf (γ) > η

dk
,
(
f◦k
)′ (γ) = 0

}
.

For ℓ ∈ {1, . . . , Nj}, denote by D(ℓ)
j the connected component of

{
gf < η

(ℓ)
j

}
that

contains Uj and define

A
(ℓ)
j = D

(ℓ)
j \

{
gf ≤ η

(ℓ−1)
j

}
.

Then f◦k induces a covering map from A
(ℓ)
j to

{
dkη

(ℓ−1)
j < gf < dkη

(ℓ)
j

}
of degree

at most dj for each ℓ ∈ {1, . . . , Nj}. Moreover, A(1)
j , . . . , A

(Nj)
j are pairwise disjoint

subannuli of Vj \ Uj . Therefore, we have

mod
(
Vj \ Uj

)
≥ 1
dj

Nj∑
ℓ=1

mod
({
dkη

(ℓ−1)
j < gf < dkη

(ℓ)
j

})
Finally, denote by ϕf : {gf > Mf } → C \D (0, exp (Mf )) a Böttcher coordinate of
f at infinity, which satisfies gf = log |ϕf |. Then ϕf induces a biholomorphism from{
dkη

(ℓ−1)
j < gf < η

(ℓ)
j

}
onto the round annulus A0

(
exp

(
dkη

(ℓ−1)
j

)
, exp

(
dkη

(ℓ)
j

))
for each ℓ ∈ {1, . . . , Nj}. Therefore, we have

mod
({
dkη

(ℓ−1)
j < gf < dkη

(ℓ)
j

})
= dk

2π

(
η

(ℓ)
j − η

(ℓ−1)
j

)
for all ℓ ∈ {1, . . . , Nj}, and hence

mod
(
Vj \ Uj

)
≥ dk

2πdj

(
η

(Nj)
j − η

(0)
j

)
= 1

2π

(
d− 1
dj

)
η .

This completes the proof of the lemma. □

Remark 33. In order to prove Theorem B in the Archimedean case, we shall only
apply Lemma 32 with η = Mf , k ∈ {0, 1} and p ∈ {1, 2}. Nonetheless, our general
statement of Lemma 32 also allows us to prove a slightly weaker version of [EL92,
Theorem 1.6], which provides a lower bound on the characteristic exponent at any
periodic point in terms of the minimum of the Green function on the set of critical
points (see Proposition 83).



MODULI SPACES OF POLYNOMIAL MAPS AND MULTIPLIERS AT SMALL CYCLES 23

3.4. Proof of Theorem B in the Archimedean case. Finally, let us combine
Lemmas 25 and 32 in order to prove Theorem B for polynomial maps defined over
an algebraically closed Archimedean valued field.

Proof of Theorem B in the Archimedean case. Suppose that K is an algebraically
closed field equipped with an Archimedean absolute value |.|∞ and f ∈ Polyd(K).
Define K̂ to be the completion of K. Then, by Ostrowski’s theorem, there exist an
embedding σ : K̂ ↪→ C and s ∈ (0, 1] such that |z|∞ = |σ(z)|s for all z ∈ K̂, where
|.| denotes the usual absolute value on C (see [Neu99, Chapter II, (4.2)]). Since K
is algebraically closed, the critical points and the periodic points for σ(f) in C all
lie in σ(K). Therefore, Mf = s ·Mσ(f) and M (p)

f = s ·M (p)
σ(f) for each p ≥ 1. Thus,

replacing f by σ(f) if necessary, we may assume that f ∈ Polyd(C).
First, assume that Kf is connected. Then Mf = 0. Let us prove that M (1)

f ≥ 0.
Denote by λ1, . . . , λd the multipliers of f at its fixed points repeated according to

their multiplicities. Then either λj = 1 for some j ∈ {1, . . . , d} or
d∑

j=1

1
1−λj

= 0 by

the holomorphic fixed-point formula. Note that, if λ ∈ D(0, 1), then ℜ
(

1
1−λ

)
> 1

2 .

Therefore, there exists j ∈ {1, . . . , d} such that |λj | ≥ 1, and thus M (1)
f ≥ 0.

Thus, assume now that Kf is disconnected. Denote by V1, . . . , VN , with N ≥ 2,
the connected components of {gf < Mf }. For j ∈ {1, . . . , N}, denote by dj ≥ 1 the

degree of f : Vj → {gf < d ·Mf }. Then
N∑

j=1
dj = d. Let us consider three cases.

Suppose that dj = 1 for some j ∈ {1, . . . , N}. Note that this holds if d ∈ {2, 3}.
Then f induces a biholomorphism from Vj to {gf < d ·Mf }. Thus, by Lemma 32,
the map f has a unique fixed point z0 ∈ Vj and we have log |f ′ (z0)| ≥ (d− 1)Mf .
In particular, M (1)

f ≥ (d− 1)Mf .
Now, suppose that the condition (1) of Lemma 25 is satisfied and dj ≥ 2 for all

j ∈ {1, . . . , N}. Then there exist j ∈ {1, . . . , N} and a connected component Uj of{
gf <

Mf

d

}
contained in Vj such that f induces a biholomorphism from Uj to Vj .

Therefore, by Lemma 32, the map f has a unique fixed point z0 ∈ Uj and we have
log |f ′ (z0)| ≥ d−1

dj
Mf . Moreover, dj = d−

∑
k ̸=j

dk ≤ d− 2. Thus, M (1)
f ≥ d−1

d−2Mf .

Finally, suppose that the condition (2) of Lemma 25 is satisfied. Then there are
connected components U1, U2 of

{
gf <

Mf

d

}
contained in V1, V2, respectively, such

that f induces biholomorphisms from U1 to V2 and from U2 to V1. By Lemma 32,
it follows that the map f◦2 has a unique fixed point z0 ∈ C such that z0 ∈ U1 and
f (z0) ∈ U2 and we have

log
∣∣∣(f◦2)′ (z0)

∣∣∣ ≥ (d− 1)
(

1
d1

+ 1
d2

)
Mf ≥ (d− 1)

(
1
d1

+ 1
d− d1

)
Mf .

Therefore, M (2)
f ≥ Cd ·Mf , where

Cd = min
j∈{1,...,d−1}

d− 1
2

(
1
j

+ 1
d− j

)
=
{

2(d−1)
d if d is even

2d
d+1 if d is odd

.

This completes the proof of the theorem. □
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Remark 34. Using Remark 27, one can easily adapt the proof above to show that
M

(2)
f ≥ Mf for all f ∈ Polyd(C) with disconnected filled Julia set Kf .

Finally, note that Theorem A is proved since it is an immediate consequence of
Theorem B in the Archimedean case.

3.5. Consequences of Theorem A. To conclude this section, let us apply here
Theorem A to establish results about the morphism Mult(2)

d . We shall also deduce
Corollaries A.1 and A.2. For brevity, we omit the analogous results concerning the
multipliers at the fixed points alone when d ∈ {2, 3}, as these can be obtained in a
completely similar way.

To conclude this section, let us use here Theorem 1.2 to obtain results about
the morphism Mult(2)

d . We shall also deduce Corollaries A.1 and A.2. For brevity,
we omit the analogous results concerning the multipliers at the fixed points alone
when d ∈ {2, 3}, as these can be obtained in a completely similar way.

First, we have the following direct consequence of Theorem A:

Corollary 35. The holomorphic map Mult(2)
d : Pd(C) → Cd × C

d(d−1)
2 is proper.

Proof. Note that, for every f ∈ Polyd(C) and every p ≥ 1, we have

exp
(
p ·M (p)

f

)
= max

λ∈Λ(p)
f

|λ| ≤ 1 + max
j∈
{

1,...,N
(p)
d

} ∣∣∣σ(p)
d,j ([f ])

∣∣∣
by Cauchy’s bound on roots of a complex polynomial. As a result, by Theorem A,
if (fn)n≥0 is any sequence of elements of Polyd(C) that degenerates in Pd(C), then

lim
n→+∞

Mult(2)
d ([fn]) = ∞ in Cd × C

d(d−1)
2 . Thus, the corollary is proved. □

To derive further consequences of Theorem A, we shall apply the general result
below from algebraic geometry.

Lemma 36. Suppose that X,Y are two affine varieties over Q and Ψ: X → Y is
a morphism such that the induced holomorphic map Ψ: X(C) → Y (C) is proper.
Then Ψ is a finite morphism.

Proof. Denote here by XC and YC the base changes of X and Y to C, respectively.
As the holomorphic map Ψ: X(C) → Y (C) is proper, the morphism Ψ: XC → YC
is proper (see [SGA71, Exposé XII, Proposition 3.2]). Therefore, since XC and YC
are affine, Ψ: XC → YC is a finite morphism (see [Liu02, Chapter 3, Lemma 3.17]).
As a result, the morphism Ψ: X → Y is finite (see [Gro65, (2.7.1)]). □

Combining Corollary 35 and Lemma 36, we immediately obtain the following:

Corollary 37. The morphism Mult(2)
d : Pd → Ad × A

d(d−1)
2 is finite.

We shall now prove Corollaries A.1 and A.2. To do this, we first present general
results about polynomial maps with rational coefficients that allow one to deduce
facts over arbitrary valued fields from analogous facts in the complex setting.

Given a valued field K, we denote here by |.|K its absolute value and, for n ≥ 1,
we denote by ∥.∥Kn the norm on Kn defined by

∥t∥Kn = max
j∈{1,...,n}

|tj |K for t = (t1, . . . , tn) ∈ Kn .
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Given a valued field K and an integer n ≥ 1, we also define

(n)K =
{
n if K is Archimedean
1 if K is non-Archimedean

,

so that

∀t ∈ Kn,

∣∣∣∣∣∣
n∑

j=1
tj

∣∣∣∣∣∣
K

≤ (n)K∥t∥Kn

by the triangle inequality.

Lemma 38. Suppose that F : Am → An, with m,n ≥ 1, is a morphism such that
the induced holomorphic map F : Cm → Cn has no zero in Cm. Then, for every
valued field K of characteristic 0, there exist some α(0)

K ∈ R>0 depending only on
the restriction of |.|K to Q and some δ ∈ R≥0 not depending on K such that

∀t ∈ Km, ∥F (t)∥Kn ≥ α
(0)
K max {1, ∥t∥Km}−δ .

Moreover, we can take α(0)
K = 1 for every non-Archimedean field K with character-

istic 0 and residue characteristic outside a finite set S(0) of prime numbers.

Proof. Write F = (F1, . . . , Fn), with F1, . . . , Fn ∈ Q [T1, . . . , Tm]. Since F1, . . . , Fn

have no common zero in Cm by hypothesis, it follows from the Nullstellensatz that
there exist G1, . . . , Gn ∈ Q [T1, . . . , Tm] such that

n∑
j=1

Fj (T1, . . . , Tm)Gj (T1, . . . , Tm) = 1 .

Define δ = max
j∈{1,...,n}

deg (Gj). For j ∈ {1, . . . , n}, write

Gj (T1, . . . , Tm) =
∑

ℓ∈{0,...,δ}m

aj,ℓ

m∏
k=1

T ℓk

k ∈ Q [T1, . . . , Tm] .

Consider the finite set

S(0) =

p prime : max
j∈{1,...,n}

ℓ∈{0,...,δ}m

|aj,ℓ|p ̸= 1

 ,

where |.|p denotes the p-adic absolute value on Q for each prime number p. Now,
suppose that K is a valued field of characteristic 0. Then we have

1 ≤ (n)K ∥F (t)∥Kn

(
max

j∈{1,...,n}
|Gj(t)|K

)
≤ A

(0)
K ∥F (t)∥Kn max {1, ∥t∥Km}δ

for all t ∈ Km by the triangle inequality, where

A
(0)
K = (n)K ((δ + 1)m)K

 max
j∈{1,...,n}

ℓ∈{0,...,δ}m

|aj,ℓ|K

 ∈ R>0 .

Therefore, setting α(0)
K =

(
A

(0)
K

)−1
, we have

∀t ∈ Km, ∥F (t)∥Kn ≥ α
(0)
K max {1, ∥t∥Km}−δ .
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Finally, note that α(0)
K depends only on the restriction of |.|K to Q. Furthermore,

we have α(0)
K = 1 if K is non-Archimedean with residue characteristic not in S(0).

This completes the proof of the lemma. □

Also, we have the following result about the growth of proper polynomial maps
at infinity:

Lemma 39. Suppose that F : Am → An, with m,n ≥ 1, is a morphism such that
the induced holomorphic map F : Cm → Cn is proper. Then, for every valued field
K of characteristic 0, there exist some α

(∞)
K , R

(∞)
K ∈ R>0 depending only on the

restriction of |.|K to Q and some β ∈ R>0 not depending on K such that

∀t ∈ Km, ∥t∥Km > R
(∞)
K =⇒ ∥F (t)∥Kn ≥ α

(∞)
K ∥t∥β

Km .

Moreover, we can take α(∞)
K = 1 and R(∞)

K = 1 for every non-Archimedean field K
with characteristic 0 and residue characteristic outside a finite set S(∞) of prime
numbers.

Proof. Write F = (F1, . . . , Fn), with F1, . . . , Fn ∈ Q [T1, . . . , Tm]. As the holomor-
phic map F : Cm → Cn is proper by hypothesis, F : Am → An is a finite morphism
by Lemma 36, and hence Tj is integral over Q [F1, . . . , Fn] for each j ∈ {1, . . . ,m}.
Thus, for each j ∈ {1, . . . ,m}, there exist Pj,0, . . . , Pj,Dj−1 ∈ Q [X1, . . . , Xn], with
Dj ≥ 1, such that

T
Dj

j =
Dj−1∑
k=0

Pj,k (F1 (T1, . . . , Tm) , . . . , Fn (T1, . . . , Tm))T k
j .

Define
γ = max

j∈{1,...,m}
k∈{0,...,Dj−1}

deg (Pj,k) ∈ Z≥1 and β = 1
γ

∈ R>0 .

For j ∈ {1, . . . ,m} and k ∈ {0, . . . , Dj − 1}, write

Pj,k (X1, . . . , Xn) =
∑

ℓ∈{0,...,γ}n

bj,k,ℓ

n∏
r=1

Xℓr
r ∈ Q [X1, . . . , Xn] .

Consider the finite set

S(∞) =

p prime : max
j∈{1,...,m}

k∈{0,...,Dj−1}
ℓ∈{0,...,γ}n

|bj,k,ℓ|p ̸= 1

 ,

where |.|p denotes the p-adic absolute value on Q for each prime number p. Now,
suppose that K is a valued field of characteristic 0. Set

A
(∞)
K =

(
max

j∈{1,...,m}
(Dj)K

)
((γ + 1)n)K

 max
j∈{1,...,m}

k∈{0,...,Dj−1}
ℓ∈{0,...,γ}n

|bj,k,ℓ|K

 ∈ R>0 .
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For every t ∈ Km, as tDj

j =
Dj−1∑
k=0

Pj,k (F (t)) tkj for all j ∈ {1, . . . ,m}, we have

∀j ∈ {1, . . . ,m}, |tj |Dj

K ≤ A
(∞)
K max {1, ∥F (t)∥Kn}γ max

{
1, |tj |K

}Dj−1

by the triangle inequality. Therefore, we have

∀t ∈ Km, ∥t∥Km ≥ 1 =⇒ ∥t∥Km ≤ A
(∞)
K max {1, ∥F (t)∥Kn}γ .

As a result, setting α(∞)
K =

(
A

(∞)
K

)−β

and R
(∞)
K = max

{
1, A(∞)

K

}
, we have

∀t ∈ Km, ∥t∥Km > R
(∞)
K =⇒ ∥F (t)∥Kn ≥ α

(∞)
K ∥t∥β

Km .

Finally, note that both α(∞)
K and R(∞)

K depend only on the restriction of |.|K to Q.
Moreover, we have α(∞)

K = 1 and R
(∞)
K = 1 if K is non-Archimedean with residue

characteristic not in S(∞). This completes the proof of the lemma. □

Remark 40. Given a polynomial map F : Cm → Cn, with m,n ≥ 1, the supremum
of all β ∈ R for which there exist α,R ∈ R>0 such that ∥F (t)∥Cn ≥ α∥t∥β

Cm for all
t ∈ Cm such that ∥t∥Cm > R is known as the Łojasiewicz exponent of F at infinity.
We refer the reader to [CK97, Corollary 2] for an analytic proof that every proper
complex polynomial map has positive Łojasiewicz exponent at infinity.

Combining Lemmas 38 and 39, we easily obtain the general result below.

Lemma 41. Suppose that F : Am → An, with m,n ≥ 1, is a morphism such that
the induced holomorphic map F : Cm → Cn is proper and has no zero in Cm. Then,
for every valued field K of characteristic 0, there exist some αK ∈ R>0 depending
only on the restriction of |.|K to Q and some β ∈ R>0 not depending on K such
that

∀t ∈ Km, ∥F (t)∥Kn ≥ αK max {1, ∥t∥Km}β .
Moreover, we can take αK = 1 for every non-Archimedean field K with character-
istic 0 and residue characteristic outside a finite set S of prime numbers.

Proof. Suppose that K is any valued field of characteristic 0. Define

αK = min
{
α

(0)
K max

{
1, R(∞)

K

}−β−δ

, α
(∞)
K

}
∈ R>0 and S = S(0) ∪ S(∞) ,

with α
(0)
K ∈ R>0, δ ∈ R≥0, S(0) as in Lemma 38 and α

(∞)
K , R

(∞)
K , β ∈ R>0, S(∞) as

in Lemma 39. Then αK depends only on the restriction of |.|K to Q, and we have
αK = 1 if K is non-Archimedean with residue characteristic outside S. Moreover,
for every t ∈ Km such that ∥t∥Km ≤ max

{
1, R(∞)

K

}
, we have

∥F (t)∥Kn ≥ α
(0)
K max

{
1, R(∞)

K

}−δ

≥ αK max {1, ∥t∥Km}β .

Also, for every t ∈ Km such that ∥t∥Km > max
{

1, R(∞)
K

}
, we clearly have

∥F (t)∥Kn ≥ αK max {1, ∥t∥Km}β .

Thus, the lemma is proved. □
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We shall now apply the lemma above to obtain results about the multipliers of
polynomials over arbitrary algebraically closed valued fields of characteristic 0. To
do this, we work with polynomial maps in a particular form, which was introduced
by Ingram in [Ing12]. Although the two claims below concerning this normal form
are already known, we include proofs for the reader’s convenience.

Given any field K of characteristic 0 and c = (c1, . . . , cd−1) ∈ Kd−1, define

fc(z) = 1
d
zd +

d−1∑
j=1

(−1)jτj(c)
d− j

zd−j ∈ Polyd(K) ,

where τ1(c), . . . , τd−1(c) denote the elementary symmetric functions of c1, . . . , cd−1,
so that

fc(0) = 0 and f ′
c(z) =

d−1∏
j=1

(z − cj) .

Consider the morphism F : Ad−1 → Pd defined by F (c) = fc.

Claim 42. The holomorphic map F : Cd−1 → Pd(C) is proper.

Proof. Assume that (cn)n≥0 is a sequence of elements of Cd−1 such that ([fcn
])n≥0

converges in Pd(C). We shall show that (cn)n≥0 is bounded in Cd−1. There exists
a sequence (ϕn)n≥0 of elements of Aff(C) such that the sequence (fn)n≥0 given by
fn = ϕn � fcn converges to some g ∈ Polyd(C). The multiset of all the fixed points
for fn tends to the multiset of all the fixed points for g in Cd/Sd as n → +∞. In
particular, (ϕn(0))n≥0 is bounded in C. In addition, the multiset of all the critical
points for fn tends to the multiset of all the critical points for g in Cd−1/Sd−1 as
n → +∞. As a result, writing cn =

(
c

(1)
n , . . . , c

(d−1)
n

)
for each n ≥ 0, the sequence(

ϕn

(
c

(j)
n

))
n≥0

is bounded in C for each j ∈ {1, . . . , d − 1}. Furthermore, writing

ϕn(z) = αnz + βn for all n ≥ 0, the polynomial fn has leading coefficient α1−d
n

d for
all n ≥ 0, which yields lim

n→+∞
|αn| = |d · ad|

−1
d−1 ∈ R>0, where ad ∈ C∗ denotes the

leading coefficient of g. Therefore, as c(j)
n = ϕn(c(j)

n )−ϕn(0)
αn

for all j ∈ {1, . . . , d− 1}
and all n ≥ 0, the sequence (cn)n≥0 is bounded in Cd−1. This completes the proof
of the claim. □

Moreover, using the triangle inequality, we easily obtain an upper bound on the
Green functions of the polynomials fc, with K an algebraically closed valued field
of characteristic 0 and c ∈ Kd−1.

Claim 43. For each algebraically closed valued field K of characteristic 0, we have

gfc(z) ≤ log+ (max {∥c∥Kd−1 , |z|K}) + ∆K

for all c ∈ Kd−1 and all z ∈ K, and in particular Mfc ≤ log+∥c∥Kd−1 + ∆K for all
c ∈ Kd−1, where

∆K = 1
d− 1 log(d)K + 1

d− 1 log
(

max
j∈{0,...,d−1}

1
|d− j|K

((
d− 1
j

))
K

)
∈ R≥0 .
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Proof. For every c ∈ Kd−1 and every z ∈ K, we have

|fc(z)|K ≤ (d)K

(
max

j∈{0,...,d−1}

∣∣∣∣ (−1)jτj(c)
d− j

zd−j

∣∣∣∣
K

)
≤ δK max {∥c∥Kd−1 , |z|K}d

by the triangle inequality, where τ0(c) = 1 by convention and

δK = (d)K

(
max

j∈{0,...,d−1}

1
|d− j|K

((
d− 1
j

))
K

)
∈ R≥1 .

It follows by induction that

|f◦n
c (z)|K ≤ δ

dn−1
d−1

K max {1, ∥c∥Kd−1 , |z|K}dn

for all c ∈ Kd−1, all z ∈ K and all n ≥ 0. Therefore, for every c ∈ Kd−1 and every
z ∈ K, we have

1
dn

log+ |f◦n
c (z)|K ≤ dn − 1

dn(d− 1) log (δK) + log+ (max {∥c∥Kd−1 , |z|K})

for all n ≥ 0, which yields the desired result by letting n → +∞. Thus, the claim
is proved. □

Finally, we obtain the following result regarding polynomial maps over arbitrary
algebraically closed valued fields of characteristic 0:

Proposition 44. Assume that K is an algebraically closed valued field of charac-
teristic 0. Then there exist some A ∈ R>0 not depending on K and some BK ∈ R
depending only on the restriction of |.|K to Q such that

max
{
M

(1)
f ,M

(2)
f

}
≥ A ·Mf +BK

for all f ∈ Polyd(K). Furthermore, we can take BK = 0 if K is non-Archimedean
with residue characteristic outside some finite set S of prime numbers.

Proof. Consider the morphism G : Ad−1 → Ad × A
d(d−1)

2 defined by

G(c) = Mult(2)
d ([fc]) =

((
σ

(1)
d,j ([fc])

)
1≤j≤d

,
(
σ

(2)
d,j ([fc])

)
1≤j≤ d(d−1)

2

)
.

Then the holomorphic map G : Cd−1 → Cd × C
d(d−1)

2 has no zero in Cd−1 because

d +
d∑

j=1
(−1)j(d − j)σ(1)

d,j = 0 by the holomorphic fixed-point formula. In addition,

the map G : Cd−1 → Cd × C
d(d−1)

2 is proper by Corollary 35 and Claim 42. Thus,
by Lemma 41, there exist some A′ ∈ R>0 not depending on K and some B′

K ∈ R
depending only on the restriction of |.|K to Q such that

∀c ∈ Kd−1, log ∥G(c)∥
Kd×K

d(d−1)
2

≥ A′ · log+∥c∥Kd−1 +B′
K .

Moreover, we can take B′
K = 0 if K is non-Archimedean with residue characteristic

outside some finite set S′ of prime numbers. By Claim 43, it follows that
log ∥G(c)∥

Kd×K
d(d−1)

2
≥ A′ ·Mfc +B′

K −A′ · ∆K

for all c ∈ Kd−1. Now, for every c ∈ Kd−1, we have∣∣∣σ(p)
d,j ([fc])

∣∣∣
K

≤

((
N

(p)
d

j

))
K

(
max

λ∈Λ(p)
fc

|λ|

)j

=
((

N
(p)
d

j

))
K

exp
(
jp ·M (p)

fc

)
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for all p ≥ 1 and all j ∈
{

1, . . . , N (p)
d

}
by the triangle inequality, and hence

log ∥G(c)∥
Kd×K

d(d−1)
2

≤ max
p∈{1,2}

j∈
{

1,...,N
(p)
d

}
(

log
((

N
(p)
d

j

))
K

+ jp ·M (p)
fc

)
.

Therefore, setting

A = A′

d(d− 1) and BK = min
p∈{1,2}

j∈
{

1,...,N
(p)
d

}
B′

K −A′ · ∆K − log
((N

(p)
d
j

))
K

jp

 ,

we have
∀c ∈ Kd−1, max

{
M

(1)
fc
,M

(2)
fc

}
≥ A ·Mfc +BK .

Now, note that A ∈ R>0 does not depend on K and BK ∈ R depends only on the
restriction of |.|K to Q. Furthermore, setting

S = S′ ∪
{
q prime : 2 ≤ q ≤ max

{
d,
d(d− 1)

2

}}
,

we have BK = 0 if K is non-Archimedean with residue characteristic not in S.
To conclude, assume that f ∈ Polyd(K) has leading coefficient ad ∈ K∗. Choose

any (d− 1)th root α ∈ K∗ of d · ad and any fixed point w ∈ K for f , and consider
ϕ(z) = α(z − w) ∈ Aff(K). Then ϕ � f ∈ Polyd(K) has leading coefficient 1

d and it
satisfies ϕ � f(0) = 0, and hence ϕ � f = fc, where c1, . . . , cd−1 ∈ K are the critical
points for ϕ � f and c = (c1, . . . , cd−1). Since Mf = Mfc and M (p)

f = M
(p)
fc

for each
integer p ≥ 1, we have max

{
M

(1)
f ,M

(2)
f

}
≥ A ·Mf +BK by the discussion above.

Thus, the proposition is proved. □

Remark 45. It follows immediately from Theorem B that we can take S to be the
set of all primes less than or equal to d in the statement of Proposition 44.

Note that Corollary A.1 is simply a weaker version of Proposition 44. We shall
now show that Corollary A.2 also follows directly from Proposition 44. To do this,
let us first briefly recall various notions of height. We refer to [Lan83, Chapter 3],
[Sil07, Chapter 3] and [Sil12, Chapter 5] for further details.

We denote here by P the set of all prime numbers. For p ∈ P, denote by Qp the
algebraic closure of the field Qp of p-adic numbers and by |.|p the natural absolute
value on Qp. Also set Q∞ = C and denote by |.|∞ the usual absolute value on Q∞.
The standard height h : Q → R≥0 is given by

h(t) = 1
[K : Q]

∑
p∈P∪{∞}

∑
σ:K↪→Qp

log+ |σ(t)|p , with t ∈ K and [K : Q] < +∞ .

Suppose that f ∈ Polyd

(
Q
)
. The canonical height ĥf : Q → R≥0 relative to f is

defined by

ĥf (z) = lim
n→+∞

1
dn
h (f◦n(z)) .
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For every number field K such that f ∈ Polyd(K) and every z ∈ K, we have

ĥf (z) = 1
[K : Q]

∑
p∈P∪{∞}

∑
σ:K↪→Qp

gσ(f) (σ(z)) .

Now, denote by Γf ⊆ Q the set of critical points for f and, for γ ∈ Γf , define ργ to
be its multiplicity as a critical point for f . The critical height Hf of f is given by

Hf =
∑

γ∈Γf

ργ · ĥf (γ) .

Proof of Corollary A.2. By Proposition 44, there exist A′ ∈ R>0 and B′
p ∈ R, for

p ∈ P ∪ {∞}, such that

∀p ∈ P ∪ {∞}, ∀g ∈ Polyd

(
Qp

)
, max

{
M (1)

g ,M (2)
g

}
≥ A′ ·Mg +B′

p .

Moreover, we can take B′
p = 0 for all but finitely many p ∈ P ∪ {∞}. Define

A = A′

d− 1 ∈ R>0 and B =
∑

p∈P∪{∞}

B′
p ∈ R .

Now, suppose that f ∈ Polyd

(
Q
)
. Fix a number field K containing the coefficients

of f , its critical points and its multipliers at all its cycles with period 1 or 2. Then

max
{
H

(1)
f , H

(2)
f

}
= 1

[K : Q]
∑

p∈P∪{∞}

∑
σ:K↪→Qp

max
q∈{1,2}
λ∈Λ(q)

f

(
1
q

log+ |σ(λ)|p
)

≥ 1
[K : Q]

∑
p∈P∪{∞}

∑
σ:K↪→Qp

max
{
M

(1)
σ(f),M

(2)
σ(f)

}
≥ 1

[K : Q]
∑

p∈P∪{∞}

∑
σ:K↪→Qp

(
A′ ·Mσ(f) +B′

p

)

≥ A

[K : Q]
∑

p∈P∪{∞}

∑
σ:K↪→Qp

∑
γ∈Γf

ργ · gσ(f) (σ(γ))

+B

= A ·Hf +B .

Thus, the corollary is proved. □

4. The non-Archimedean case

We shall adapt here the discussion of Section 3 in order to prove Theorem B in
the non-Archimedean case.

Throughout this section, we fix an integer d ≥ 2 and an algebraically closed field
K of characteristic 0 equipped with a non-Archimedean absolute value |.|. We also
assume that the residue characteristic of K either equals 0 or is greater than d, so
that |j| = 1 for all j ∈ {1, . . . , d}. In addition, we assume that |.| is not the trivial
absolute value, as Theorem B would be immediate otherwise. Note that we do not
assume K to be complete here, although there is no gain in generality in not doing
so since Theorem B clearly holds for K if it holds for its completion K̂.
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4.1. A few preliminaries on non-Archimedean analysis. First, let us recall
some basic facts about disks and polynomial maps in the non-Archimedean setting.
We omit proofs and refer to [Ben19, Chapters 2 and 3] for further information.

In this section, we shall only work with finite unions of disks. Given w ∈ K and
r ∈ R>0, we denote by D(w, r) and D(w, r) the open and closed disks of center w
and radius r, respectively, which are given by

D(w, r) = {z ∈ K : |z − w| < r} and D(w, r) = {z ∈ K : |z − w| ≤ r} .

Note that a disk has a unique radius. In contrast, each point of a disk is a center.
Although all disks are both open and closed topologically, we say here that a disk
is open if it is of the form D(w, r), with w ∈ K and r ∈ R>0, and we say that it is
closed if it is of the form D(w, r), with w ∈ K and r ∈ R>0. Now, note that a disk
is both open and closed if and only if its radius does not lie in |K∗|.

Suppose that U is a finite union of disks in K. Then U can be written uniquely
as the union of finitely many pairwise disjoint disks U1, . . . , UN in K, with N ≥ 0.
In addition, every disk contained in U is contained in Uj for some j ∈ {1, . . . , N}.
These disks U1, . . . , UN are called the disk components of U . The disk components
of every finite union of open disks are all open. Similarly, the disk components of
every finite union of closed disks are all closed.

Now, every nonconstant polynomial in K[z] maps open disks to open disks and
closed disks to closed disks. Given disks U, V in K, we say that a polynomial map
f : U → V has degree e ≥ 1 if every element of V has exactly e preimages under f
in U , counting multiplicities.

Given a polynomial f ∈ K[z] of degree D ≥ 1 with leading coefficient aD ∈ K∗

and w ∈ K, it is not hard to show that, for all r ∈ R>0 sufficiently large, we have

f (D(w, r)) = D
(
f(w), |aD| rD

)
and f

(
D(w, r)

)
= D (f(w), |aD| rD)

and the maps f : D(w, r) → D
(
f(w), |aD| rD

)
and f : D(w, r) → D (f(w), |aD| rD)

have degree D. More generally, the result below describes precisely the images of
disks under nonconstant polynomial maps in the non-Archimedean setting.

Lemma 46. Suppose that f ∈ K[z] has degree D ≥ 1, w ∈ K and r ∈ R>0. Set

s = max
j∈{1,...,D}

∣∣∣∣f (j)(w)
j!

∣∣∣∣ rj ∈ R>0 ,

and define emin and emax to be the smallest and largest integers j ∈ {1, . . . , D} such
that s =

∣∣∣ f(j)(w)
j!

∣∣∣ rj, respectively. Then we have

f (D(w, r)) = D (f(w), s) and f
(
D(w, r)

)
= D (f(w), s) .

Moreover, the maps f : D(w, r) → D (f(w), s) and f : D(w, r) → D (f(w), s) have
degrees emin and emax, respectively.

We can also describe the preimages of disks under polynomial maps in the non-
Archimedean setting.

Lemma 47. Suppose that U, V are disks in K, f : U → V is a polynomial map of
degree e ≥ 1 and W is a disk contained in V . Then f−1(W ) is a nonempty finite
union of disks, and its disk components U1, . . . , UN , with N ≥ 1, are all open if W
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is open and all closed if W is closed. Moreover, the map f : Uj → W has a degree

ej ≥ 1 for each j ∈ {1, . . . , N}, and we have e =
N∑

j=1
ej.

Remark 48. Note that, if f ∈ K[z] is a polynomial of degree e ≥ 1 and W is a disk
in K, then the conclusion of Lemma 47 still holds. Indeed, in this case, there exist
disks U, V in K such that U = f−1(V ) and W ⊆ V , and f : U → V has degree e.

Finally, we have a non-Archimedean analogue of the Riemann–Hurwitz formula
for disks, which relates the degree of a map to the number of its critical points.

Lemma 49. Suppose that U, V are disks in K and f : U → V is a polynomial map
of degree e ≥ 1. Also assume that e is less than the residue characteristic of K if
the latter is positive. Then e = C + 1, where C ≥ 0 is the number of critical points
for f in U , counting multiplicities.

Remark 50. The assumption on the degree of the map in Lemma 49 is necessary,
as the following shows: Suppose that p ≥ 2 is a prime number. Then the algebraic
closure Qp of the field Qp of p-adic numbers is naturally a non-Archimedean field
with residue characteristic p. The polynomial f(z) = zp − pz ∈ Qp[z] maps D(0, 1)
onto itself with degree p, while the critical points for f all lie outside D(0, 1). The
polynomial g(z) = zp+1 − zp ∈ Qp[z] maps D(0, 1) onto itself with degree p, while
the critical points for g all lie in D(0, 1). In particular, the conclusion of Lemma 49
does not hold for the maps f : D(0, 1) → D(0, 1) and g : D(0, 1) → D(0, 1).

4.2. The Green function of a polynomial map in the non-Archimedean
setting. Now, let us adapt our discussion of Green functions and maximal escape
rates for complex polynomial maps to the non-Archimedean setting.

Suppose that f ∈ Polyd(K). Recall that the Green function gf : K → R≥0 of f
is given by

gf (z) = lim
n→+∞

1
dn

log+ |f◦n(z)| .

This map gf is well defined and satisfies gf ◦ f = d · gf . Moreover, for each z ∈ K,
we have gf (z) = 0 if and only if sup

n≥0
|f◦n(z)| < +∞. Also recall that the maximal

escape rate Mf of f is defined by
Mf = max {gf (c) : c ∈ K, f ′(c) = 0} .

For every ϕ ∈ Aff(K), we have gϕ�f = gf ◦ ϕ−1, and hence Mϕ�f = Mf .
Thus, using conjugation, we may first restrict our attention to polynomials in a

particular form. For c = (c1, . . . , cd−1) ∈ Kd−1, define

fc(z) = 1
d
zd +

d−1∑
j=1

(−1)jτj(c)
d− j

zd−j ∈ Polyd(K) ,

where τ1(c), . . . , τd−1(c) denote the elementary symmetric functions of c1, . . . , cd−1,
so that

fc(0) = 0 and f ′
c(z) =

d−1∏
j=1

(z − cj) .

These polynomials have already been studied by Ingram in [Ing12]. Nevertheless,
for completeness and to specify the values of certain constants in the present case,
we include details.
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For c = (c1, . . . , cd−1) ∈ Kd−1, define

∥c∥ = max
j∈{1,...,d−1}

|cj | ∈ R≥0 .

Using the ultrametric triangle inequality and our assumption on the residue char-
acteristic of K, we obtain the following:

Claim 51. We have gfc(z) ≤ log+ (max {∥c∥, |z|}) for all c ∈ Kd−1 and all z ∈ K.
Moreover, we have gfc(z) = log+|z| for all c ∈ Kd−1 and all z ∈ K \D (0, ∥c∥).

Proof. Note that the first assertion is simply a particular case of Claim 43. Thus,
let us prove the second one. Suppose that c ∈ Kd−1. For every z ∈ K \D (0, ∥c∥),
we have

max
j∈{1,...,d−1}

∣∣∣∣ (−1)jτj(c)
d− j

zd−j

∣∣∣∣ ≤ max
j∈{1,...,d−1}

∥c∥j |z|d−j < |z|d =
∣∣∣∣1dzd

∣∣∣∣ ,

which yields |fc(z)| = |z|d by the ultrametric triangle inequality. By induction, we
deduce that |f◦n

c (z)| = |z|dn for all z ∈ K \D (0,max {1, ∥c∥}) and all n ≥ 0. As a
result, for every z ∈ K \D (0,max {1, ∥c∥}), we have 1

dn log+ |f◦n
c (z)| = log+|z| for

all n ≥ 0, which yields gfc(z) = log+|z| by letting n → +∞. Finally, we also have
gfc(z) = log+|z| for each z ∈ D(0, 1) \D (0, ∥c∥) by the first assertion of the claim.
Thus, the claim is proved. □

Now, let us determine the maximal escape rates of these polynomials. To do so,
we shall use Macaulay resultants to have an effective version of the Nullstellensatz
for r homogeneous polynomials in r variables over a commutative ring, with r ≥ 1.
Thus, let us start by recalling a few necessary facts about resultants.

Suppose that R is a commutative ring and P1, . . . , Pr ∈ R [T1, . . . , Tr] are homo-
geneous polynomials of degrees e1, . . . , er ≥ 1, respectively, with r ≥ 1. Then there
exists an element res (P1, . . . , Pr) ∈ R, called the Macaulay resultant of P1, . . . , Pr,
that satisfies the following:

• There are an integer E ≥ max
k∈{1,...,r}

ek and some homogeneous polynomials

Qj,k ∈ R [T1, . . . , Tr] of degrees E − ek, with j, k ∈ {1, . . . , r}, such that

res (P1, . . . , Pr)TE
j =

r∑
k=1

Pk (T1, . . . , Tr)Qj,k (T1, . . . , Tr)

for each j ∈ {1, . . . , r}.
• For any algebraically closed field Ω and any ring homomorphism φ : R → Ω,

we have φ (res (P1, . . . , Pr)) = 0 if and only if the homogeneous polynomials
φ (P1) , . . . , φ (Pr) ∈ Ω [T1, . . . , Tr] have a common zero in Ωr \ {0}, where
φ : R [T1, . . . , Tr] → Ω [T1, . . . , Tr] denotes the unique ring homomorphism
that extends φ : R → Ω and satisfies φ (Tj) = Tj for all j ∈ {1, . . . , r}.

We refer to [Lan02, Chapter IX, Section 3] for further details about resultants.
We now return to the study of the polynomials fc ∈ Polyd(K), with c ∈ Kd−1.

Consider the subring A = Z
[ 1

2 , . . . ,
1
d

]
of K. For each a ∈ A, we have |a| ≤ 1, with

equality holding if and only if a is not divisible by the residue characteristic of K.
For j ∈ {1, . . . , d− 1}, also consider the polynomial Fj ∈ A [T1, . . . , Td−1] given by
Fj(c) = fc (cj) for all c = (c1, . . . , cd−1) ∈ Kd−1. For every j ∈ {1, . . . , d− 1}, the
polynomial Fj is homogeneous of degree d. Furthermore, we have the following:
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Claim 52. We have |res (F1, . . . , Fd−1)| = 1.

Proof. Suppose that p > d is a prime number. Let us show that res (F1, . . . , Fd−1)
is not divisible by p in A. Note that A/pA is the field Fp with p elements. Thus,
denoting by Fp the algebraic closure of Fp, we have a natural ring homomorphism
φ : A → Fp. Then res (F1, . . . , Fd−1) ∈ pA if and only if φ (res (F1, . . . , Fd−1)) = 0,
which occurs if and only if φ (F1) , . . . , φ (Fd−1) have a common zero in Fd−1

p \ {0}.
Suppose that c = (c1, . . . , cd−1) ∈ Fd−1

p is a common zero of φ (F1) , . . . , φ (Fd−1).
We shall prove that c = 0. Define

f(z) = 1
d
zd +

d−1∑
j=1

(−1)jτj(c)
d− j

zd−j ∈ Fp[z] ,

where τ1(c), . . . , τd−1(c) denote the elementary symmetric functions of c1, . . . , cd−1.

We have f′(z) =
d−1∏
j=1

(z − cj) and f (cj) = φ (Fj) (c) = 0 for each j ∈ {1, . . . , d− 1}.

Now, define Γ = {c1, . . . , cd−1} and, for γ ∈ Γ, denote by ργ the number of indices
j ∈ {1, . . . , d− 1} such that cj = γ. We have f′(z) =

∏
γ∈Γ

(z − γ)ργ and f(γ) = 0 for

each γ ∈ Γ. As a result, as Fp has characteristic p > d, each γ ∈ Γ has multiplicity
ργ + 1 as a preimage of 0 under f and every other preimage of 0 has multiplicity 1.
It follows that

d = r +
∑
γ∈Γ

(ργ + 1) = r + d− 1 + s ,

where r ≥ 0 is the number of preimages of 0 under f that are not in Γ and s ≥ 1 is
the cardinality of Γ, which yields r = 0 and s = 1. Therefore, as f(0) = 0, we have
Γ = {0}, and hence c = 0. Thus, we have proved that res (F1, . . . , Fd−1) ∈ A \ pA
for each prime number p > d. In particular, res (F1, . . . , Fd−1) ∈ A is not divisible
by the residue characteristic of K. This completes the proof of the claim. □

This allows us to determine the maximal escape rate Mfc of fc, with c ∈ Kd−1.

Claim 53. We have Mfc = log+∥c∥ for all c ∈ Kd−1.

Proof. Suppose that c = (c1, . . . , cd−1) ∈ Kd−1. We have gfc (cj) ≤ log+∥c∥ for all
j ∈ {1, . . . , d− 1} by the first assertion of Claim 51, and hence Mfc ≤ log+∥c∥. It
remains to show that Mfc ≥ log+∥c∥. If ∥c∥ ≤ 1, this is immediate. Thus, assume
now that ∥c∥ > 1. There exist some integer D ≥ d and homogeneous polynomials
Gj,k ∈ A [T1, . . . , Td−1] of degree D − d, with j, k ∈ {1, . . . , d− 1}, such that

res (F1, . . . , Fd−1) cD
j =

d−1∑
k=1

fc (ck)Gj,k(c)

for each j ∈ {1, . . . , d− 1}. Therefore, by Claim 52, we have

|cj |D ≤ max
k∈{1,...,d−1}

|fc (ck)Gj,k(c)| ≤
(

max
k∈{1,...,d−1}

|fc (ck)|
)

∥c∥D−d

for all j ∈ {1, . . . , d− 1}, and hence max
k∈{1,...,d−1}

|fc (ck)| ≥ ∥c∥d. Thus, there exists

k ∈ {1, . . . , d− 1} such that |fc (ck)| ≥ ∥c∥d. By the second assertion of Claim 51,
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as ∥c∥ > 1, it follows that

d · gfc (cj) = gfc (fc (cj)) = log+ |fc (cj)| ≥ d · log+∥c∥ .

Thus, we have Mfc ≥ log+∥c∥, and the claim is proved. □

From the discussion above, we now derive results about the Green functions of
arbitrary polynomials in Polyd(K).

Lemma 54. Suppose that f ∈ Polyd(K) has leading coefficient ad ∈ K∗. Then,
for each η ∈ R>0, the set {gf < η} is a nonempty finite union of open disks and
the set {gf ≤ η} is a nonempty finite union of closed disks. Moreover, {gf < η} is
an open disk of radius |ad|

−1
d−1 exp(η) for all η ∈ (Mf ,+∞). In addition, {gf ≤ η}

is a closed disk of radius |ad|
−1

d−1 exp(η) for all η ∈ [Mf ,+∞).

Proof. Choose a (d− 1)th root α ∈ K∗ of d · ad and a fixed point w ∈ K for f , and
define ϕ(z) = α(z − w) ∈ Aff(K). Then ϕ � f ∈ Polyd(K) has leading coefficient 1

d
and satisfies ϕ � f(0) = 0, and therefore ϕ � f = fc, where c1, . . . , cd−1 ∈ K are the
critical points for ϕ � f and c = (c1, . . . , cd−1). Now, by Claims 51 and 53, we have
{gfc < η} = D (0, exp(η)) for all η ∈ (Mfc ,+∞). Moreover, we have gfc = gf ◦ϕ−1

and Mfc = Mf by conjugation. Therefore, as |α| = |ad|
1

d−1 , we have

∀η ∈ (Mf ,+∞) , {gf < η} = ϕ−1 ({gfc < η}) = D
(
w, |ad|

−1
d−1 exp(η)

)
.

Similarly, we have {gfc ≤ η} = D (0, exp(η)) for each η ∈ [Mfc ,+∞) by Claims 51
and 53, and hence

∀η ∈ [Mf ,+∞) , {gf ≤ η} = ϕ−1 ({gfc ≤ η}) = D
(
w, |ad|

−1
d−1 exp(η)

)
.

Finally, suppose that η ∈ R>0. There exists an integer k ≥ 0 such that dkη > Mf .
Then

{
gf < dkη

}
is an open disk in K by the previous discussion. By Lemma 47,

it follows that
{gf < η} =

(
f◦k
)−1 ({

gf < dkη
})

is a nonempty finite union of open disks. Similarly,
{
gf ≤ dkη

}
is a closed disk in

K by the previous discussion, and hence

{gf ≤ η} =
(
f◦k
)−1 ({

gf ≤ dkη
})

is a nonempty finite union of closed disks by Lemma 47. This completes the proof
of the lemma. □

Finally, we also have the following non-Archimedean analogue of Lemma 19:

Lemma 55. Suppose that f ∈ Polyd(K) satisfies Mf > 0, and denote by ad ∈ K∗

its leading coefficient and by C ≥ 1 the number of critical points c ∈ K for f such
that gf (c) = Mf , counting multiplicities. Then {gf < Mf } has exactly C + 1 disk
components, and these are all open disks of radius |ad|

−1
d−1 exp (Mf ).

Proof. By Lemma 54, the set {gf < Mf } is a nonempty finite union of open disks.
Denote here by U1, . . . , UN , with N ≥ 1, its disk components. For j ∈ {1, . . . , N},
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denote by Cj ≥ 0 the number of critical points for f in Uj , counting multiplicities.

Note that
N∑

j=1
Cj = d− 1 − C. Now, as {gf < d ·Mf } is a disk by Lemma 54 and

{gf < Mf } = f−1 ({gf < d ·Mf }) ,

the map f : Uj → {gf < d ·Mf } has a degree dj ≥ 1 for all j ∈ {1, . . . , N}, and we

have d =
N∑

j=1
dj , by Lemma 47. In addition, dj = Cj + 1 for each j ∈ {1, . . . , N} by

Lemma 49. Therefore, we have

d =
N∑

j=1
(Cj + 1) = d− 1 − C +N ,

and hence N = C + 1, as desired.
Finally, note that {gf ≤ Mf } is a disk of radius |ad|

−1
d−1 exp (Mf ) by Lemma 54.

Moreover, for every j ∈ {1, . . . , C + 1}, we have

f (Uj) = {gf < d ·Mf } and f ({gf ≤ Mf }) = {gf ≤ d ·Mf } ,

and these are two disks of the same radius by Lemma 54. By Lemma 46, it follows
that Uj also has radius |ad|

−1
d−1 exp (Mf ) for all j ∈ {1, . . . , C + 1}. This completes

the proof of the lemma. □

4.3. A combinatorial argument. Now, let us obtain an analogue of Lemma 25,
which plays a key role in our proof of Theorem B in the Archimedean case.

To do this, we shall first prove the two-islands lemma below, which is the non-
Archimedean counterpart of Lemma 23.

Lemma 56. Suppose that U, V are disks, f : U → V is a polynomial map of degree
e ≥ 1 and V1, V2 are disjoint disks contained in V . Also assume that e is less than
the residue characteristic of K if the latter is positive. Then there exist j ∈ {1, 2}
and a disk component Uj of f−1 (Vj) such that f induces a bijection from Uj to Vj.

Proof. For j ∈ {1, 2}, denote here by Cj ≥ 0 the number of critical points for f in
f−1 (Vj), counting multiplicities. Then, by Lemma 49, we have

e = C + 1 ≥ C1 + C2 + 1 ≥ 2 min {C1, C2} + 1 ,

where C ≥ 0 is the number of critical points for f in U , counting multiplicities. By
Lemma 47, the set f−1 (Vj) is a nonempty finite union of disks for each j ∈ {1, 2}.
For j ∈ {1, 2}, denote by U (1)

j , . . . , U
(Nj)
j its disk components, with Nj ≥ 1. Then,

by Lemma 47, for each j ∈ {1, 2}, the map f : U (ℓ)
j → Vj has a degree e(ℓ)

j ≥ 1 for

all ℓ ∈ {1, . . . , Nj}, and we have e =
Nj∑
ℓ=1

e
(ℓ)
j . In addition, for all j ∈ {1, 2} and all

ℓ ∈ {1, . . . , Nj}, we have e(ℓ)
j = C

(ℓ)
j + 1 by Lemma 49, where C(ℓ)

j ≥ 0 denotes the
number of critical points for f in U

(ℓ)
j , counting multiplicities. Thus, we have

∀j ∈ {1, 2}, e =
Nj∑
ℓ=1

(
C

(ℓ)
j + 1

)
= Cj +Nj .
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Therefore, as e ≥ 2 min {C1, C2} + 1, there exists j ∈ {1, 2} such that Cj < Nj . As
a result, C(ℓ)

j = 0 for some ℓ ∈ {1, . . . , Nj}, and we have e(ℓ)
j = 1. Thus, f induces

a bijection from U
(ℓ)
j to Vj , and the lemma is proved. □

Remark 57. The assumptions that f : U → V is surjective and that its degree e is
finite and satisfies a certain condition related to the residue characteristic of K are
essential in our proof of Lemma 56. In [Ben03], Benedetto proved a more involved
two-islands theorem for holomorphic functions on a disk in an algebraically closed
field that is complete with respect to a non-Archimedean and nontrivial absolute
value. In [Ben08], Benedetto also proved a non-Archimedean four-islands theorem
for meromorphic functions. We refer the reader to these articles for more details.

Finally, we have the result below, which is completely analogous to Lemma 25.

Lemma 58. Suppose that f ∈ Polyd(K) satisfies Mf > 0. Then one of the follow-
ing two conditions is satisfied:

(1) there exists a disk component U of
{
gf <

Mf

d

}
such that f induces a bijec-

tion from U onto the disk component V of {gf < Mf } containing U ;
(2) for all distinct disk components V, V ′ of {gf < Mf }, there exists a disk

component U of
{
gf <

Mf

d

}
contained in V such that f induces a bijection

from U onto V ′.
In addition, if d ∈ {2, 3}, then there exists a disk component V of {gf < Mf } such
that f induces a bijection from V onto {gf < d ·Mf }.

Proof. Assume here that the condition (1) does not hold, and let us show that the
condition (2) is satisfied. By Lemma 54,

{
gf <

Mf

d

}
and {gf < Mf } are nonempty

finite unions of disks. Now, assume that V, V ′ are two distinct disk components of
{gf < Mf }. It follows from Lemma 47 that f−1(V ) and f−1 (V ′) are both unions
of disk components of

{
gf <

Mf

d

}
. Now, as {gf < d ·Mf } is a disk by Lemma 54,

the induced map f : V → {gf < d ·Mf } has a degree e ∈ {1, . . . , d} by Lemma 47.
Moreover, no disk component of

{
gf <

Mf

d

}
contained in V is mapped bijectively

onto V by f by hypothesis. Therefore, by Lemma 56, f maps a disk component of{
gf <

Mf

d

}
contained in V bijectively onto V ′. Thus, the desired result is proved.

Finally, assume that d ∈ {2, 3}. By Lemma 54, {gf < Mf } is a nonempty finite
union of disks and {gf < d ·Mf } is a disk. In fact, by Lemma 55, {gf < Mf } has
several disk components V1, . . . , VN , with N ≥ 2. By Lemma 47, the induced map

f : Vj → {gf < d ·Mf } has a degree dj ≥ 1 for each j ∈ {1, . . . , N}, and d =
N∑

j=1
dj .

Therefore, as d ≤ 3, there exists j ∈ {1, . . . , N} such that dj = 1, and f induces a
bijection from Vj onto {gf < d ·Mf }. This completes the proof of the lemma. □

4.4. Multipliers and maximal escape rates. Here, let us relate multipliers at
periodic points to maximal escape rates under certain combinatorial assumptions.
More precisely, let us obtain a non-Archimedean analogue of Lemma 32.

In the non-Archimedean setting, ratios of radii of disks play the role of moduli
of complex annuli. Thus, we have the well-known result below, which follows from
Lemma 46 and is the non-Archimedean counterpart of Lemma 31.
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Lemma 59. Suppose that U ⊊ V are disks and f : U → V is a bijective polynomial
map. Then f has a unique fixed point z0 ∈ U and |f ′ (z0)| = s

r , where r, s ∈ R>0
are the radii of U, V , respectively.

Proof. Note that s > r since U ⊊ V by hypothesis and U and V are both open or
both closed by Lemma 46. Now, choose w ∈ f−1(U). By Lemma 46, as w ∈ U and
f : U → V is bijective, we have |f ′(w)| = s

r and s ≥
∣∣∣ f(j)(w)

j!

∣∣∣ rj for each j ≥ 2, with
strict inequality if U is closed. Now, define g(z) = f(z) − z ∈ K[z]. Then we have
|g′(w)| = |f ′(w) − 1| = s

r since |f ′(w)| = s
r > 1. Moreover, for each j ≥ 2, we have

s ≥
∣∣∣ g(j)(w)

j!

∣∣∣ rj , with strict inequality if U is closed, since g(j)(w) = f (j)(w). As a
result, g(U) is a disk of radius s and the induced map g : U → g(U) is bijective by
Lemma 46. Moreover, we have |g(w)| = |f(w) − w| ≤ r as w ∈ f−1(U), and hence
0 ∈ g(U). Therefore, the map f : U → V has a unique fixed point z0 ∈ U . Finally,
as f : U → V is bijective, we have |f ′ (z0)| = s

r by Lemma 46. This completes the
proof of the lemma. □

We also have the well-known result below, which follows easily from Lemma 46
and is a non-Archimedean analogue of Grötzsch’s inequality.

Lemma 60. Suppose that f ∈ K[z] is not constant and U ⊆ V are disks. Then(
R

r

)e

≤ S

s
≤
(
R

r

)E

,

where r,R, s, S are the radii of U, V, f(U), f(V ), respectively, and e and E are the
degrees of f : U → f(U) and f : V → f(V ), respectively.

Proof. Choose w ∈ U . Then U, V are disks of center w and radii r,R, respectively.
Therefore, by Lemma 46, we have

s =
∣∣∣∣f (e)(w)

e!

∣∣∣∣ re ≥
∣∣∣∣f (E)(w)

E!

∣∣∣∣ rE and S =
∣∣∣∣f (E)(w)

E!

∣∣∣∣RE ≥
∣∣∣∣f (e)(w)

e!

∣∣∣∣Re .

This completes the proof of the lemma. □

Finally, we obtain the result below, which is the non-Archimedean counterpart
of Lemma 32. Note that, in the present context, we also have an upper bound on
the absolute values of multipliers.

Lemma 61. Suppose that f ∈ Polyd(K) satisfies Mf > 0, η ≥ Mf , U0, . . . , Up−1
are disk components of

{
gf <

η
dk

}
, with k ≥ 0 and p ≥ 1, V0, . . . , Vp−1 are the disk

components of
{
gf <

η
dk−1

}
containing U0, . . . , Up−1, respectively, and f induces a

bijection from Uj to Vj+1 (mod p) for all j ∈ {0, . . . , p− 1}. Then f◦p has a unique
fixed point z0 ∈ K such that f◦j (z0) ∈ Uj for all j ∈ {0, . . . , p− 1}. Furthermore,
we have

(d− 1)

p−1∑
j=0

1
ej

 η ≤ log
∣∣(f◦p)′ (z0)

∣∣ ≤ (d− 1)

p−1∑
j=0

1
dj

 η ,

where dj and ej denote the degrees of the induced maps f◦k : U j → {gf ≤ η} and
f◦k : Vj → {gf < d · η}, respectively, and U j is the disk component of

{
gf ≤ η

dk

}
containing Uj for all j ∈ {0, . . . , p− 1}.
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Proof. For j ∈ {0, . . . , p− 1}, define fj : Uj → Vj+1 (mod p) to be the bijective map
induced by f . For j ∈ {0, . . . , p}, define

Wj = (fj−1 ◦ · · · ◦ f0)−1 (
Vj (mod p)

)
= (fj−2 ◦ · · · ◦ f0)−1 (Uj−1) ,

where W0 = V0 and W1 = U0 by convention. It follows from Lemma 47 that Wj is
a disk for all j ∈ {0, . . . , p}. In addition, for each j ∈ {0, . . . , p− 1}, we have

f◦k (Uj) ⊆ {gf ≤ η} ⊊ {gf < d · η} = f◦k (Vj)

by Lemmas 47 and 54, which yields Uj ⊊ Vj , and hence Wj+1 ⊊ Wj . As a result,
by Lemma 59, the map fp−1 ◦ · · · ◦ f0 : Wp → W0 has a unique fixed point z0 ∈ Wp

and we have ∣∣(f◦p)′ (z0)
∣∣ = ρ0

ρp
=

p−1∏
j=0

ρj

ρj+1
,

where ρ0, . . . , ρp denote the radii of W0, . . . ,Wp, respectively. Now, note that z0 is
the unique fixed point for f◦p that satisfies f◦j (z0) ∈ Uj for all j ∈ {0, . . . , p− 1}.
Thus, it remains to prove the desired inequalities. For j ∈ {0, . . . , p− 1}, define rj

and Rj to be the radii of Uj and Vj , respectively. Then, for all j ∈ {0, . . . , p− 1},
we have ρj

ρj+1
= Rj

rj
by Lemma 60 since fj−1 ◦ · · · ◦ f0 maps bijectively Wj onto Vj

and Wj+1 onto Uj . Thus, it suffices to prove that
(

d−1
ej

)
η ≤ log

(
Rj

rj

)
≤
(

d−1
dj

)
η

for all j ∈ {0, . . . , p− 1}. Suppose that j ∈ {0, . . . , p− 1}. As d · η > Mf , we have
f◦(k+1) (Uj) = {gf < d · η} and f◦(k+1) (U j

)
= {gf ≤ d · η} by Lemmas 47 and 54,

and these are disks of the same radius by Lemma 54. As a result, the disk U j also
has radius rj by Lemma 46. Therefore, as f◦k maps U j onto {gf ≤ η} with degree
dj and Vj onto {gf < d · η} with degree ej , we have(

Rj

rj

)dj

≤ exp ((d− 1)η) ≤
(
Rj

rj

)ej

by Lemmas 54 and 60. This completes the proof of the lemma. □

Remark 62. To prove Theorem B in the non-Archimedean case, we shall only use
Lemma 61 with η = Mf , k ∈ {0, 1} and p ∈ {1, 2} to only derive lower bounds on
the absolute values of multipliers at certain small cycles. Nonetheless, our general
statement of Lemma 61 also allows us to show that the bounds in Theorem B are
optimal (see Propositions 65 and 66) and to obtain a lower bound on the absolute
values of multipliers at all cycles in terms of the periods and the minimum of the
Green function on the set of critical points (see Proposition 83).

4.5. Proof of Theorem B in the non-Archimedean case. Now, let us derive
Theorem B in the non-Archimedean case from Lemmas 58 and 61. This is similar
to our proof of Theorem B in the Archimedean case.

Proof of Theorem B in the non-Archimedean case. Assume here that K is an alge-
braically closed field of characteristic 0 that is equipped with a non-Archimedean
absolute value |.| with residue characteristic 0 or greater than d and f ∈ Polyd(K).
Note that the desired result is immediate if the absolute value |.| is trivial. Thus,
from now on, assume that |.| is not trivial.

First, suppose that Mf = 0. Denote by λ1, . . . , λd the multipliers of f at all its
fixed points repeated according to their multiplicities. Define σ1, . . . , σd to be the
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elementary symmetric functions of λ1, . . . , λd. We have d+
d∑

j=1
(−1)j(d− j)σj = 0

by the holomorphic fixed-point formula. Therefore, since |d| = 1, we have |σj | ≥ 1
for some j ∈ {1, . . . , d} by the ultrametric triangle inequality. As a result, we have
|λk| ≥ 1 for some k ∈ {1, . . . , d} by the ultrametric triangle inequality. This shows
that M (1)

f ≥ 0, as desired.
Thus, from now on, assume that Mf > 0. By Lemma 54, {gf < Mf } is a finite

union of disks and {gf < d ·Mf } is a disk. Moreover, {gf < Mf } has several disk
components V1, . . . , VN , with N ≥ 2, by Lemma 55. Now, by Lemma 47, the map
f : Vj → {gf < d ·Mf } has some degree dj ≥ 1 for all j ∈ {1, . . . , N}, and we have

d =
N∑

j=1
dj . To conclude, let us consider three cases.

Suppose that dj = 1 for some j ∈ {1, . . . , N}. Note that this holds if d ∈ {2, 3}.
Then f induces a bijection from Vj onto {gf < d ·Mf }. Therefore, by Lemma 61,
f has a unique fixed point z0 ∈ Vj and we have log |f ′ (z0)| ≥ (d− 1)Mf . Thus, we
have M (1)

f ≥ (d− 1)Mf .
Now, suppose that the condition (1) of Lemma 58 is satisfied and dj ≥ 2 for all

j ∈ {1, . . . , N}. Then there exist some j ∈ {1, . . . , N} and a disk component Uj of{
gf <

Mf

d

}
contained in Vj such that f maps bijectively Uj to Vj . As a result, by

Lemma 61, f has a unique fixed point z0 ∈ Uj and we have log |f ′ (z0)| ≥ d−1
dj
Mf .

Moreover, dj = d−
∑
k ̸=j

dk ≤ d− 2. Thus, we have M (1)
f ≥ d−1

d−2Mf .

Finally, suppose that the condition (2) of Lemma 58 is satisfied. Then there are
disk components U1, U2 of

{
gf <

Mf

d

}
contained in V1, V2, respectively, such that

f maps bijectively U1 to V2 and U2 to V1. As a result, by Lemma 61, the map f◦2

has a unique fixed point z0 ∈ K such that z0 ∈ U1 and f (z0) ∈ U2 and we have

log
∣∣∣(f◦2)′ (z0)

∣∣∣ ≥ (d− 1)
(

1
d1

+ 1
d2

)
Mf ≥ (d− 1)

(
1
d1

+ 1
d− d1

)
Mf .

Moreover, d−1
2

(
1

d1
+ 1

d−d1

)
≥ Cd. Thus, we have M (2)

f ≥ Cd ·Mf . This completes
the proof of the theorem. □

Remark 63. As in the complex setting, one can strengthen Lemmas 56 and 58 and
deduce that M (2)

f ≥ 2Mf for all f ∈ Polyd(K) such that Mf > 0.
4.6. Sharpness of the bounds. To end this section, let us show that the bounds
in Theorem B are sharp in some sense. We shall first study the non-Archimedean
case and then deduce that our bounds are also optimal in the complex setting. To
avoid making our discussion too long, we omit the simpler cases where d ∈ {2, 3}.

We shall use the following result from non-Archimedean dynamics:
Lemma 64. Suppose that U ⊆ V are disks and f : U → V is a polynomial map
of degree e ≥ 2 whose critical points all lie in

⋂
n≥0

(f◦n)−1 (V ). Also assume that e

is less than the residue characteristic of K if the latter is positive. Then we have∣∣(f◦p)′ (z0)
∣∣ ≤ 1 for each periodic point z0 ∈ K for f with period p ≥ 1.

Proof. First, note that f has exactly e− 1 critical points in U , counting multiplici-
ties, by Lemma 49. Now, assume that (f◦n)−1 (V ) is a disk for some n ≥ 0. Then,
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by Lemma 47,
(
f◦(n+1))−1 (V ) is the union of finitely many pairwise disjoint disks

W1, . . . ,WN , with N ≥ 1, the induced map f : Wj → (f◦n)−1 (V ) has some degree

ej ≥ 1 for each j ∈ {1, . . . , N}, and we have e =
N∑

j=1
ej . For j ∈ {1, . . . , N}, denote

by Cj ≥ 0 the number of critical points for f in Wj , counting multiplicities. Then
N∑

j=1
Cj = e− 1 by assumption. In addition, ej = Cj + 1 for each j ∈ {1, . . . , N} by

Lemma 49. As a result, we have e =
N∑

j=1
(Cj + 1) = e− 1 +N , which yields N = 1

and e1 = e. Thus,
(

(f◦n)−1 (V )
)

n≥0
is a decreasing sequence of disks and the map

f :
(
f◦(n+1))−1 (V ) → (f◦n)−1 (V ) has degree e for each n ≥ 0. For n ≥ 0, denote

by rn ∈ R>0 the radius of (f◦n)−1 (V ). We have rn−1
rn

=
(

rn

rn+1

)e

for each n ≥ 1 by
Lemma 60. Now, suppose that z0 ∈ K is a periodic point for f with period p ≥ 1.
As z0 ∈

⋂
n≥0

(f◦n)−1 (V ), we have
∣∣(f◦p)′ (z0)

∣∣ ≤ rn

rn+p
for each n ≥ 0 by Lemma 46.

Thus, we have
∣∣(f◦p)′ (z0)

∣∣ ≤
(

r0
rp

) 1
en

for each n ≥ 0, which yields
∣∣(f◦p)′ (z0)

∣∣ ≤ 1
by letting n → +∞. This completes the proof of the lemma. □

Exhibiting explicit examples, we obtain the two results below, which show that
the bounds in Theorem B are optimal in the non-Archimedean case.

Proposition 65. Assume here that d ≥ 4. Then, for every R ∈ |K∗|, there exists
f ∈ Polyd(K) such that

Mf = log+(R) , M
(1)
f = 0 and M

(2)
f = Cd ·Mf ,

where Cd ∈ R>0 is defined in Theorem B.

Proof. Observe that, if R ∈ (0, 1], then f(z) = zd satisfies the required conditions.
Now, assume that R ∈ |K∗| ∩ (1,+∞). Choose γ ∈ K∗ such that |γ| = R. Set

(d0, d1) =
{(

d
2 ,

d
2
)

if d is even(
d−1

2 , d+1
2
)

if d is odd
, so that Cd = d− 1

2

(
1
d0

+ 1
d1

)
.

Define

f(z) = fc(z) =
d1−1∑
j=0

bjz
d0+j(z − γ)d1−1−j (d0z − (d0 + 1 + j)ω) ,

with bj = (−1)j(d0−1)!(d1−1)!
(d0+1+j)!(d1−1−j)! for all j ∈ {0, . . . , d1 − 1}, where

ω = d0

d
γ + (−1)d1(d− 1)!

(d0 − 1)! (d1 − 1)!γ
2−d and c =

 0, . . . , 0︸ ︷︷ ︸
d0−1 entries

, γ, . . . , γ︸ ︷︷ ︸
d1−1 entries

, ω

 .

Thus, we have
f(0) = 0 , f(γ) = γ and f ′(z) = zd0−1(z − γ)d1−1(z − ω) .

Note that |ω| = R. As a result, we have Mf = log(R) > 0 by Claim 53. Moreover,
we have gf (0) = 0 and gf (γ) = 0, which yields gf (ω) = Mf . Therefore, {gf < Mf }
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is the union of two disjoint open disks V0, V1 of radius R by Lemma 55. Without
loss of generality, we can assume that 0 ∈ V0 and γ ∈ V1. Thus, by Lemmas 47, 49
and 54, the maps f0 : V0 → {gf < d ·Mf } and f1 : V1 → {gf < d ·Mf } induced by
f have degrees d0 and d1, respectively, since 0 and γ are critical points for f with
multiplicities d0 − 1 and d1 − 1, respectively. Now, by Lemmas 47 and 49, f−1

0 (V1)
is the union of d0 pairwise distinct disk components U (1)

0 , . . . , U
(d0)
0 of

{
gf <

Mf

d

}
and f maps bijectively U (k)

0 to V1 for all k ∈ {1, . . . , d0}. Similarly, f−1
1 (V0) is the

union of d1 pairwise distinct disk components U (1)
1 , . . . , U

(d1)
1 of

{
gf <

Mf

d

}
and f

maps bijectively U (ℓ)
1 to V0 for all ℓ ∈ {1, . . . , d1}.

Now, suppose that k ∈ {1, . . . , d0} and ℓ ∈ {1, . . . , d1}. Then there is a unique
periodic point z0 ∈ K for f with period 2 such that z0 ∈ U

(k)
0 and f (z0) ∈ U

(ℓ)
1 by

Lemma 61. Now, define U0 = f−1
0 ({gf ≤ Mf }) and U1 = f−1

1 ({gf ≤ Mf }). Then
U0 and U1 are disks and the maps f : U0 → {gf ≤ Mf } and f : U1 → {gf ≤ Mf }
have degrees d0 and d1, respectively, by Lemmas 47, 49 and 54. Thus, U0 and U1

are also the disk components of
{
gf ≤ Mf

d

}
containing z0 and f (z0), respectively.

Therefore, by Lemma 61, we have
1
2 log

∣∣∣(f◦2)′ (z0)
∣∣∣ = d− 1

2

(
1
d0

+ 1
d1

)
Mf = Cd ·Mf .

Let us conclude the proof of the proposition. If z0 ∈ K is any fixed point for f ,
then the point z0 is also fixed for fj : Vj → {gf < d ·Mf } for some j ∈ {0, 1}, and
hence log |f ′ (z0)| ≤ 0 by Lemma 64. In addition, we always have M (1)

f ≥ 0 by the
holomorphic fixed-point formula, as shown in the proof of Theorem B. This shows
that M (1)

f = 0. Now, suppose that z0 ∈ K is a periodic point for f with period 2.
If z0 and f (z0) both lie in Vj for some j ∈ {0, 1}, then the point z0 is also periodic
for fj , and therefore 1

2 log
∣∣∣(f◦2)′ (z0)

∣∣∣ ≤ 0 by Lemma 64. Otherwise, replacing z0

by f (z0) if necessary, we have z0 ∈ U
(k)
0 and f (z0) ∈ U

(ℓ)
1 for some k ∈ {1, . . . , d0}

and some ℓ ∈ {1, . . . , d1}, and hence 1
2 log

∣∣∣(f◦2)′ (z0)
∣∣∣ = Cd ·Mf by the discussion

above. Moreover, we also proved that the latter case occurs for some choices of z0.
Thus, we have M (2)

f = Cd ·Mf . This completes the proof of the proposition. □

Proposition 66. Assume here that d ≥ 4. Then, for every R ∈ |K∗|, there exists
f ∈ Polyd(K) such that

Mf = log+(R) , M
(1)
f = d− 1

d− 2Mf and M
(2)
f = d− 1

d− 2Mf .

Proof. Observe that, if R ∈ (0, 1], then f(z) = zd satisfies the required conditions.
Now, assume that R ∈ |K∗| ∩ (1,+∞). Choose γ ∈ K∗ such that |γ| = R. Define

f(z) = fc(z) = 1
d
z2(z − γ)d−2 , with c =

0, γ, . . . , γ︸ ︷︷ ︸
d−3 entries

,
2
d
γ

 ∈ Kd−1 .

Thus, we have

f(0) = 0 , f(γ) = 0 and f ′(z) = z(z − γ)d−3
(
z − 2

d
γ

)
.
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Note that Mf = log(R) > 0 by Claim 53. Moreover, gf (0) = 0 and gf (γ) = 0, and
hence gf

( 2
dγ
)

= Mf . Therefore, {gf < Mf } is the union of two disjoint open disks
V0, V1 of radius R by Lemma 55. Without loss of generality, we may assume that
0 ∈ V0 and γ ∈ V1. Since 0 and γ are critical points for f with multiplicities 1 and
d − 3, respectively, the maps f0 : V0 → {gf < d ·Mf } and f1 : V1 → {gf < d ·Mf }
induced by f have degrees 2 and d− 2, respectively, by Lemmas 47, 49 and 54. By
similar arguments, the sets U0 = f−1

0 ({gf ≤ Mf }) and U1 = f−1
1 ({gf ≤ Mf }) are

all the disk components of
{
gf ≤ Mf

d

}
and the induced maps f : U0 → {gf ≤ Mf }

and f : U1 → {gf ≤ Mf } have degrees 2 and d − 2, respectively. The set f−1
1 (V1)

is the union of d− 2 distinct disk components U (1)
1 , . . . , U

(d−2)
1 of

{
gf <

Mf

d

}
and

f maps bijectively U (k)
1 onto V1 for each k ∈ {1, . . . , d− 2} by Lemmas 47 and 49.

Similarly, the set f−1
0 (V1) is the union of two distinct disk components W (1)

0 ,W
(2)
0

of
{
gf <

Mf

d

}
and f maps bijectively W (k)

0 onto V1 for each k ∈ {1, 2}. Moreover,

the set W1 = f−1
1 (V0) is a disk component of

{
gf <

Mf

d

}
and f maps W1 onto V0

with degree d− 2.
Suppose that k ∈ {1, . . . , d− 2}. Then, by the discussion above and Lemma 61,

there is a unique fixed point z0 ∈ U
(k)
1 for f and we have log |f ′ (z0)| = d−1

d−2Mf .
Now, suppose that k, ℓ ∈ {1, . . . , d− 2} are distinct. Then, by Lemma 61, there

exists a unique periodic point z0 ∈ K for f with period 2 such that z0 ∈ U
(k)
1 and

f (z0) ∈ U
(ℓ)
1 and we have 1

2 log
∣∣∣(f◦2)′ (z0)

∣∣∣ = d−1
d−2Mf .

Finally, suppose that z0 ∈ K is any periodic point for f with period 2 such that
z0 ∈ V0 and f (z0) ∈ V1. Note that z0 ∈ W

(k)
0 and f (z0) ∈ W1 for some k ∈ {1, 2}.

Now, denote by D0 and D1 the disk components of
{
gf <

Mf

d2

}
containing z0 and

f (z0), respectively. Then f induces bijections from D0 onto W1 and from D1 onto
W

(k)
0 by Lemmas 47 and 49. Therefore, z0 is the unique periodic point for f with

period 2 such that z0 ∈ D0 and f (z0) ∈ D1 by Lemma 61. First, observe that the
maps f◦2 : W (k)

0 → {gf < d ·Mf } and f◦2 : W1 → {gf < d ·Mf } have degrees d−2
and 2(d − 2), respectively. Next, denote here by D0 and D1 the disk components
of
{
gf ≤ Mf

d2

}
containing z0 and f (z0), respectively. Then, by Lemmas 47 and 49,

f maps bijectively D0 onto U1, we have D1 = f−1
1
(
U0
)

and the map f : D1 → U0
has degree d− 2. It follows that f◦2 : D0 → {gf ≤ Mf } and f◦2 : D1 → {gf ≤ Mf }
have degrees d− 2 and 2(d− 2), respectively. Therefore, by Lemma 61, we have

1
2 log

∣∣∣(f◦2)′ (z0)
∣∣∣ = d− 1

2

(
1

d− 2 + 1
2(d− 2)

)
Mf = 3(d− 1)

4(d− 2)Mf .

Let us conclude the proof of the proposition. Suppose that z0 ∈ K is any fixed
point for f . If z0 ∈ V0, then the point z0 is also fixed for f0 : V0 → {gf < d ·Mf },
which yields log |f ′ (z0)| ≤ 0 by Lemma 64. Otherwise, we have z0 ∈ U

(k)
1 for some

k ∈ {1, . . . , d− 2}, and hence log |f ′ (z0)| = d−1
d−2Mf by the previous discussion. In

addition, we also proved that the latter case occurs for certain choices of z0. This
shows that M (1)

f = d−1
d−2Mf . Now, suppose that z0 ∈ K is any periodic point for f

with period 2. If z0 and f (z0) both lie in V0, then the point z0 is also periodic for
f0, and hence 1

2 log
∣∣∣(f◦2)′ (z0)

∣∣∣ ≤ 0 by Lemma 64. If z0 and f (z0) both lie in V1,
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then z0 ∈ U
(k)
1 and f (z0) ∈ U

(ℓ)
1 for some distinct k, ℓ ∈ {1, . . . , d − 2}, and hence

1
2 log

∣∣∣(f◦2)′ (z0)
∣∣∣ = d−1

d−2Mf by the previous discussion. Otherwise, replacing z0 by
f (z0) if necessary, we have z0 ∈ V0 and f (z0) ∈ V1, and thus the discussion above
yields 1

2 log
∣∣∣(f◦2)′ (z0)

∣∣∣ = 3(d−1)
4(d−2)Mf . Furthermore, we also proved that the second

case occurs for some choices of z0. Thus, we have M (2)
f = d−1

d−2Mf . This completes
the proof of the proposition. □

Applying Propositions 65 and 66 with the non-Archimedean field K = C
{{ 1

t

}}
of convergent complex Puiseux series in 1

t , with t an indeterminate, we shall show
that the bounds in Theorem B are also optimal in the complex setting.

Assume here that t is an indeterminate and K = C
{{ 1

t

}}
is the field of Puiseux

series in 1
t with coefficients in C that converge on some punctured neighborhood of

t = ∞. Then K is algebraically closed according to the Newton–Puiseux theorem
(see [Now00]). We equip K with its usual absolute value |.|, which is given by

|a| = lim
t→∞

exp
(

log |a(t)|∞
log|t|∞

)
,

where |.|∞ denotes the usual absolute value on C. Thus, K is a non-Archimedean
valued field and its residue field is naturally isomorphic to C. Now, note that any
meromorphic function on a neighborhood of t = ∞ in Ĉ can be identified with an
element of K via its Laurent series expansion at t = ∞. In particular, denoting by
D the closed unit disk around the origin in C, every holomorphic family (ft)t∈C\D
of elements of Polyd(C) with a pole at t = ∞ induces some element f ∈ Polyd(K).
Specifically, if a holomorphic family (ft)t∈C\D of elements of Polyd(C) with a pole

at t = ∞ is given by ft(z) =
d∑

j=0
aj(t)zj , with a0, . . . , ad holomorphic on C \ D and

meromorphic on Ĉ \ D, then the induced element f ∈ Polyd(K) is f(z) =
d∑

j=0
ajz

j .

To deduce results in the complex setting from analogous statements in the non-
Archimedean case, we shall use the result below. It is a particular case of a result
due to DeMarco.
Lemma 67 ([DeM16, Proposition 3.1]). Suppose here that K = C

{{ 1
t

}}
is the

field of convergent complex Puiseux series in 1
t , (ft)t∈C\D is a holomorphic family

of elements of Polyd(C) that has a pole at t = ∞ and f ∈ Polyd(K) is the element
induced by (ft)t∈C\D. Then Mft

= Mf · log|t|∞ + o (log|t|∞) as t → ∞.

We shall also use the following fact:
Lemma 68. Suppose here that K = C

{{ 1
t

}}
is the field of convergent complex

Puiseux series in 1
t , (ft)t∈C\D is a holomorphic family of elements of Polyd(C) that

has a pole at t = ∞ and f ∈ Polyd(K) is the element induced by (ft)t∈C\D. Then,
for every integer p ≥ 1, we have M (p)

ft
= M

(p)
f · log|t|∞ +O(1) as t → ∞.

Proof. Suppose that p ≥ 1 is an integer. Write

Λ(p)
f = [λ1, . . . , λN ] ∈ KN/SN , with N = N

(p)
d .

There exists R ∈ R>0 such that the complex Puiseux series λ1, . . . , λN all converge
on C \ DR, where DR denotes the closed disk of center 0 and radius R in C. Then,
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as the elementary symmetric functions of the multipliers of polynomials of degree
d at all their cycles with period p define regular functions σ(p)

d,j ◦ πd on Polyd, with
j ∈ {1, . . . , N}, we have

∀t ∈ C \ DR, Λ(p)
ft

= [λ1(t), . . . , λN (t)] ∈ CN/SN .

Finally, note that log |a(t)|∞ = log|a| · log|t|∞ +O(1) as t → ∞ for each a ∈ K. In
particular, for each j ∈ {1, . . . , N}, we have log |λj(t)|∞ = log |λj | · log|t|∞ + O(1)
as t → ∞. This completes the proof of the lemma. □

Finally, combining Propositions 65 and 66 with Lemmas 67 and 68, we directly
deduce the two results below, which show that the bounds in Theorem B are also
sharp in the complex case.

Corollary 69. Assume that d ≥ 4. Then there exists a rational family (ft)t∈C∗ of
elements of Polyd(C) such that ft degenerates in Pd(C) as t → ∞ and

M
(1)
ft

= O(1) and M
(2)
ft

∼ Cd ·Mft as t → ∞ .

Proof. Consider the rational family (ft)t∈C∗ of elements of Polyd(C) defined by

ft(z) =
d1−1∑
j=0

bjz
d0+j(z − t)d1−1−j (d0z − (d0 + 1 + j)ωt) ,

with bj = (−1)j(d0−1)!(d1−1)!
(d0+1+j)!(d1−1−j)! for all j ∈ {0, . . . , d1 − 1}, where

(d0, d1) =
{(

d
2 ,

d
2
)

if d is even(
d−1

2 , d+1
2
)

if d is odd
and ωt = d0

d
t+ (−1)d1(d− 1)!

(d0 − 1)! (d1 − 1)! t
2−d .

Now, assume that K = C
{{ 1

t

}}
, and denote by f ∈ Polyd(K) the element induced

by (ft)t∈C∗ . Then, as |t| = exp(1), the proof of Proposition 65 shows that Mf = 1,
M

(1)
f = 0 and M

(2)
f = Cd · Mf . Thus, the desired result follows immediately from

Lemmas 67 and 68. □

Corollary 70. Assume that d ≥ 4. Then there exists a polynomial family (ft)t∈C
of elements of Polyd(C) such that ft degenerates in Pd(C) as t → ∞ and

M
(1)
ft

∼ d− 1
d− 2Mft

and M
(2)
ft

∼ d− 1
d− 2Mft

as t → ∞ .

Proof. Consider the polynomial family (ft)t∈C of elements of Polyd(C) defined by

ft(z) = 1
d
z2(z − t)d−2 .

Now, assume that K = C
{{ 1

t

}}
, and denote by f ∈ Polyd(K) the element induced

by (ft)t∈C. Then, as |t| = exp(1), the proof of Proposition 66 shows that Mf = 1,
M

(1)
f = d−1

d−2Mf and M
(2)
f = d−1

d−2Mf . Thus, the desired result follows immediately
from Lemmas 67 and 68. □

5. Unique determination of a generic conjugacy class of polynomial
maps by its multipliers at its small cycles

In this section, we shall prove Theorem C. As before, we fix an integer d ≥ 2.
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5.1. Some preliminaries. First, let us present the ingredients that we use in our
proof of Theorem C.

Since Pd(C) ∼= Pmc
d (C), we can restrict our attention to monic centered complex

polynomials. Recall here that

Polymc
d (C) =

zd +
d−2∑
j=0

bjz
j : b0, . . . , bd−2 ∈ C

 .

Now, define α = exp
(

2πi
d−1

)
, so that

µd−1(C) = ⟨α⟩ =
{
αk : k ∈ {0, . . . , d− 2}

}
.

Also recall that the group µd−1(C) acts on Polymc
d (C) via ω � f = ωf

(
z
ω

)
and that

Pd(C) is biholomorphic to the quotient Pmc
d (C) of Polymc

d (C) by µd−1(C).
Our objective is to prove the result below, which directly implies Theorem C.

Lemma 71. There exists a nonempty open subset U of Polymc
d (C) such that, for

every f ∈ U ,{
g ∈ Polymc

d (C) : Λ(1)
g = Λ(1)

f and Λ(2)
g = Λ(2)

f

}
=
{
αk � f : k ∈ {0, . . . , d− 2}

}
.

Define Ξ to be the set of all elements [λ0, . . . , λd−1] ∈ Cd/Sd that satisfy λj ̸= 1
for all j ∈ {0, . . . , d− 1} and

∀J ⊆ {0, . . . , d− 1},
∑
j∈J

1
1 − λj

= 0 ⇐⇒ J = ∅ or {0, . . . , d− 1} .

To prove Lemma 71, we shall use the result below, which is due to Fujimura.

Lemma 72 ([Fuj07, Theorem 6]). Suppose that Λ ∈ Ξ. Then there exist at most
(d− 1)! elements f ∈ Polymc

d (C) such that Λ(1)
f = Λ.

Now, define
f0(z) = zd ∈ Polymc

d (C) .
We shall also use the explicit expressions for the differentials of multiplier maps at
f0, which are due to Gorbovickis.

Lemma 73 ([Gor16, Lemma 3.1]). Suppose that z0 ∈ C∗ is a periodic point for f0
with period p ≥ 1, U is an open neighborhood of f0 in Polymc

d (C), ζ0 : U → C is a
holomorphic map such that ζ0 (f0) = z0 and f◦p (ζ0(f)) = ζ0(f) for all f ∈ U and
ρ0 : U → C is the holomorphic map defined by ρ0(f) = (f◦p)′ (ζ0(f)). Then

∀k ∈ {0, . . . , d− 2}, ∂ρ0

∂ak
(f0) = dp−1(k − d)

p−1∑
j=0

z
dj(k−d)
0 .

5.2. Multipliers at fixed points. Here, let us parametrize some open neighbor-
hood U1 of f0 in Polymc

d (C) by the multipliers at the fixed points and describe, for
a generic f ∈ U1, all the elements g ∈ Polymc

d (C) such that Λ(1)
g = Λ(1)

f .
The fixed points for f0 are precisely 0 and the points αj , with j ∈ {0, . . . , d− 2}.

In addition, we have f ′
0(0) = 0 and f ′

0
(
αj
)

= d for all j ∈ {0, . . . , d− 2}. It follows
from the implicit function theorem that there exist an open neighborhood U1 of f0



48 VALENTIN HUGUIN

in Polymc
d (C) and holomorphic maps ζ(1)

j : U1 → C, with j ∈ {0, . . . , d − 2} ∪ {♢},
such that

ζ
(1)
j (f0) =

{
αj if j ∈ {0, . . . , d− 2}
0 if j = ♢

and ∀f ∈ U1, f
(
ζ

(1)
j (f)

)
= ζ

(1)
j (f)

for all j ∈ {0, . . . , d− 2} ∪ {♢}. Shrinking U1 if necessary, we may assume that the
points ζ(1)

j (f), with j ∈ {0, . . . , d− 2} ∪ {♢}, are pairwise distinct for each f ∈ U1.
For every f ∈ U1, we have

Φ(1)
f (z) =

(
z − ζ

(1)
♢ (f)

) d−2∏
j=0

(
z − ζ

(1)
j (f)

)
.

For j ∈ {0, . . . , d− 2} ∪ {♢}, define the holomorphic map ρ(1)
j : U1 → C \ {1} by

ρ
(1)
j (f) = f ′

(
ζ

(1)
j (f)

)
.

For every f ∈ U1, we have

Λ(1)
f =

[
ρ

(1)
0 (f), . . . , ρ(1)

d−2(f), ρ(1)
♢ (f)

]
and 1

1 − ρ
(1)
♢ (f)

+
d−2∑
j=0

1
1 − ρ

(1)
j (f)

= 0 .

Now, define the holomorphic map

ρ1 =
(
ρ

(1)
0 , . . . , ρ

(1)
d−2

)
: U1 → Cd−1 .

Denote by · the natural action of Sd−1 on Cd−1, which is given by

σ · (λ0, . . . , λd−2) =
(
λσ−1(0), . . . , λσ−1(d−2)

)
.

By the formulas above,

(5.1) ∀f, g ∈ U1, (∃σ ∈ Sd−1, ρ1(g) = σ · ρ1(f)) =⇒ Λ(1)
f = Λ(1)

g .

Now, define

A1 =
(
∂ρ

(1)
j

∂ak
(f0)

)
0≤j,k≤d−2

∈ M(d−1)×(d−1)(C)

to be the Jacobian matrix of ρ1 at f0. By Lemma 73, we have

A1 =
(

(k − d)αj(k−1)
)

0≤j,k≤d−2
.

As a consequence, we have the key result below. For k ∈ {0, . . . , d− 2}, define the
polynomial

Pk(T ) = αk
∏

0≤j≤d−2
j ̸=k

(
T − αj

αk − αj

)
∈ C[T ] .

Claim 74. The matrix A1 is invertible and A−1
1 = (Bj,k)0≤j,k≤d−2, where

∀k ∈ {0, . . . , d− 2}, Pk(T ) =
d−2∑
j=0

(j − d)Bj,kT
j .
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Proof. Suppose that
B = (Bj,k)0≤j,k≤d−2 ∈ M(d−1)×(d−1)(C) .

For k ∈ {0, . . . , d− 2}, define the polynomial

Qk(T ) =
d−2∑
j=0

(j − d)Bj,kT
j ∈ C[T ] .

Also denote by δ the Kronecker delta. Then

A1B = Id−2 ⇐⇒ ∀j, k ∈ {0, . . . , d− 2},
d−2∑
ℓ=0

(ℓ− d)Bℓ,kα
j(ℓ−1) = δjk

⇐⇒ ∀j, k ∈ {0, . . . , d− 2}, Qk

(
αj
)

= αjδjk

⇐⇒ ∀k ∈ {0, . . . , d− 2}, Qk = Pk .
This completes the proof of the claim. □

By Claim 74 and the inverse function theorem, shrinking U1 if necessary, we can
assume that ρ1 induces a biholomorphism from U1 onto an open neighborhood V1
of (d, . . . , d) in Cd−1. In addition, shrinking further U1 if necessary, we can assume
that U1 is connected, Λ(1)

f ∈ Ξ for all f ∈ U1 and V1 is invariant under the natural
action of Sd−1.

Now, define the action ∗ of Sd−1 on U1 by
σ ∗ f = ρ−1

1 (σ · ρ1(f)) .
Denote by ∆ the fat diagonal of Cd−1, which is given by

∆ =
⋃

0≤j<k≤d−2

{
(λ0, . . . , λd−2) ∈ Cd−1 : λj = λk

}
.

By (5.1), we have Λ(1)
σ∗f = Λ(1)

f ∈ Ξ for all f ∈ U1 and all σ ∈ Sd−1. Moreover, for
each f ∈ U1 \ ρ−1

1 (∆), the elements σ ∗ f , with σ ∈ Sd−1, are pairwise distinct. It
follows from Lemma 72 that

(5.2) ∀f ∈ U1 \ ρ−1
1 (∆),

{
g ∈ Polymc

d (C) : Λ(1)
g = Λ(1)

f

}
= {σ ∗ f : σ ∈ Sd−1} .

In addition, we can describe conjugation in terms of this action. Define the cyclic
permutation

σ0 = (0 . . . d− 2) ∈ Sd−1 .

Claim 75. We have αk � f = σk
0 ∗ f for all f ∈ U1 and all k ∈ {0, . . . , d− 2}.

Proof. The set U1 \ ρ−1
1 (∆) is a connected open subset of Polymc

d (C). Moreover, if
f ∈ U1 \ ρ−1

1 (∆) and k ∈ {0, . . . , d− 2}, then there exists a permutation σ ∈ Sd−1

such that αk � f = σ ∗ f by (5.2), as Λ(1)
αk�f = Λ(1)

f , and hence αk � f ∈ U1 \ ρ−1
1 (∆).

Thus, U1 \ ρ−1
1 (∆) is invariant under the action of µd−1(C) = ⟨α⟩ by conjugation.

As a result, if j, k ∈ {0, . . . , d− 2}, then there exists ℓ ∈ {0, . . . , d− 2} ∪ {♢} such
that ζ(1)

j

(
αk � f

)
= αkζ

(1)
ℓ (f) for all f ∈ U1 \ ρ−1

1 (∆), and we obtain ℓ = σ−k
0 (j) by

letting f → f0. Thus, we have ζ(1)
j

(
αk � f

)
= αkζ

(1)
σ−k

0 (j)
(f) for all f ∈ U1 \ ρ−1

1 (∆)
and all j, k ∈ {0, . . . , d− 2}. As a consequence, for each f ∈ U1 \ ρ−1

1 (∆) and each
k ∈ {0, . . . , d− 2}, we have ρ1

(
αk � f

)
= σk

0 · ρ1(f) since the multiplier is invariant
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under conjugation, which yields αk � f = σk
0 ∗ f . Thus, f 7→ αk � f and f 7→ σk

0 ∗ f
coincide on U1 \ ρ−1

1 (∆), and hence they coincide on all of U1 since U1 \ ρ−1
1 (∆) is

dense in U1. This completes the proof of the claim. □

5.3. Multipliers at cycles with period 2. Here, let us examine the variations
of the multipliers at the cycles with period 2 on some open neighborhood U2 of f0
in Polymc

d (C).
First, the periodic points for f0 with period 2 are the

(
d2 − 1

)
th roots of unity

that are not (d− 1)th roots of unity. Choose representatives w0, . . . , w d(d−1)
2 −1 for

the cycles for f0 with period 2. Setting β = exp
(

2πi
d2−1

)
, we can take wj = αjβ for

all j ∈ {0, . . . , d− 2} since these lie in pairwise distinct cycles for f0 with period 2.
We have

(
f◦2

0
)′ (wj) = d2 for all j ∈

{
0, . . . , d(d−1)

2 − 1
}

. By the implicit function
theorem, there exist an open neighborhood U2 of f0 in Polymc

d (C) and holomorphic
maps ζ(2)

j : U2 → C, with j ∈
{

0, . . . , d(d−1)
2 − 1

}
, such that

ζ
(2)
j (f0) = wj and ∀f ∈ U2, f

◦2
(
ζ

(2)
j (f)

)
= ζ

(2)
j (f)

for all j ∈
{

0, . . . , d(d−1)
2 − 1

}
. Shrinking U2 if necessary, we may assume that U2

is connected and invariant under the action of µd−1(C) = ⟨α⟩ by conjugation. For
every f ∈ U2, we have

Φ(2)
f (z) =

d(d−1)
2 −1∏
j=0

(
z − ζ

(2)
j (f)

)(
z − f

(
ζ

(2)
j (f)

))
.

Now, for j ∈
{

0, . . . , d(d−1)
2 − 1

}
, define the holomorphic map ρ

(2)
j : U2 → C by

ρ
(2)
j (f) =

(
f◦2)′

(
ζ

(2)
j (f)

)
.

For every f ∈ U2, we have

Λ(2)
f =

[
ρ

(2)
0 (f), . . . , ρ(2)

d(d−1)
2 −1

(f)
]

.

Define the holomorphic map

ρ2 =
(
ρ

(2)
0 , . . . , ρ

(2)
d(d−1)

2 −1

)
: U2 → C

d(d−1)
2 .

Also denote by · the natural action of S d(d−1)
2

on C
d(d−1)

2 , which is given by

τ ·
(
λ0, . . . , λ d(d−1)

2 −1

)
=
(
λτ−1(0), . . . , λτ−1

(
d(d−1)

2 −1
)) .

By the formula above,

(5.3) ∀f, g ∈ U2, Λ(2)
f = Λ(2)

g ⇐⇒
(

∃τ ∈ S d(d−1)
2

, ρ2(g) = τ · ρ2(f)
)

.

We may describe the behavior of ρ2 under conjugation. Define τ0 ∈ S d(d−1)
2

to

be the permutation such that, for each j ∈
{

0, . . . , d(d−1)
2 − 1

}
, the point αwj lies

in the cycle for f0 containing wτ0(j). By the choice of w0, . . . , wd−2, we have
(5.4) ∀j ∈ {0, . . . , d− 2}, τ0(j) = j + 1 (mod d− 1) ∈ {0, . . . , d− 2} .
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Claim 76. We have ρ2
(
αk � f

)
= τk

0 ·ρ2(f) for all f ∈ U2 and all k ∈ {0, . . . , d−2}.

Proof. For every j ∈
{

0, . . . , d(d−1)
2 − 1

}
and every k ∈ {0, . . . , d− 2}, there exists

ℓ ∈
{

0, . . . , d(d−1)
2 − 1

}
such that α−kζ

(2)
j

(
αk � f

)
lies in the cycle for f containing

ζ
(2)
ℓ (f) for all f ∈ U2, and we have ℓ = τ−k

0 (j) since α−kwj lies in the cycle for f0
containing wℓ by taking f = f0. Thus, for each f ∈ U2 and each k ∈ {0, . . . , d− 2},
the point α−kζ

(2)
j

(
αk � f

)
belongs to the cycle for f containing ζ(2)

τ−k
0 (j)

(f) for each

j ∈
{

0, . . . , d(d−1)
2 − 1

}
, and hence ρ2

(
αk � f

)
= τk

0 · ρ2(f) because the multiplier
is invariant under conjugation. This completes the proof of the claim. □

Finally, define

A2 =
(
∂ρ

(2)
j

∂ak
(f0)

)
0≤j≤ d(d−1)

2 −1
0≤k≤d−2

∈ M d(d−1)
2 ×(d−1)(C)

to be the Jacobian matrix of ρ2 at f0. By Lemma 73, we have

(5.5) A2 =
(
d(k − d)

(
wk−d

j + w
d(k−d)
j

))
0≤j≤ d(d−1)

2 −1
0≤k≤d−2

.

5.4. Proof of Theorem C. Finally, let us conclude here our proof of Lemma 71
and deduce Theorem C.

By (5.2) and Claim 75, to prove Lemma 71, it suffices to show that there exists
a nonempty open subset U ⊆ U1 \ ρ−1

1 (∆) of Polymc
d (C) such that

(5.6) ∀f ∈ U,
{
σ ∈ Sd−1 : Λ(2)

σ∗f = Λ(2)
f

}
= ⟨σ0⟩ .

Choose a connected open neighborhood U0 ⊆ U1 ∩U2 of f0 in Polymc
d (C) such that

V0 = ρ1 (U0) ⊆ Cd−1 is invariant under the natural action of Sd−1, and define the
holomorphic map

ρ = ρ2 ◦ ρ−1
1 : V0 → C

d(d−1)
2 .

By (5.3), for every f ∈ U0 and every σ ∈ Sd−1,

Λ(2)
σ∗f = Λ(2)

f ⇐⇒ ∃τ ∈ S d(d−1)
2

, ρ2(σ ∗ f) = τ · ρ2(f)

⇐⇒ ∃τ ∈ S d(d−1)
2

, ρ (σ · ρ1(f)) = τ · ρ (ρ1(f)) .

Thus, to prove Lemma 71, it suffices to show that there is a nonempty open subset
V ⊆ V0 of Cd−1 such that

(5.7) ∀λ ∈ V,
{
σ ∈ Sd−1 : ∃τ ∈ S d(d−1)

2
, ρ(σ · λ) = τ · ρ(λ)

}
= ⟨σ0⟩ ,

since U = ρ−1
1 (V \ ∆) would then satisfy (5.6).

By Claims 75 and 76, for every f ∈ U0 and every k ∈ {0, . . . , d− 2}, we have

ρ
(
σk

0 · ρ1(f)
)

= ρ2
(
σk

0 ∗ f
)

= ρ2
(
αk � f

)
= τk

0 · ρ2(f) = τk
0 · ρ (ρ1(f)) .

Therefore, we have

(5.8) ∀λ ∈ V0, ∀k ∈ {0, . . . , d− 2}, ρ
(
σk

0 · λ
)

= τk
0 · ρ(λ) .
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Thus, in view of (5.7), it is enough to prove that there is a nonempty open subset
V ⊆ V0 of Cd−1 such that ρ(σ · λ) ̸= τ · ρ(λ) for all λ ∈ V , all σ ∈ Sd−1 \ ⟨σ0⟩ and
all τ ∈ S d(d−1)

2
.

Now, identify elements of Cd−1 and C
d(d−1)

2 with column vectors. Define

A = A2A
−1
1 ∈ M d(d−1)

2 ×(d−1)(C)

to be the Jacobian matrix of ρ at (d, . . . , d) ∈ Cd−1, so that

ρ ((d, . . . , d) + h) =
(
d2, . . . , d2)+Ah+ o(h) as h → 0 .

Denote by ×c the action of Sd−1 on M d(d−1)
2 ×(d−1)(C) that permutes the columns

of matrices, which is given by

σ ×c
(
C0 . . . Cd−2

)
=
(
Cσ−1(0) . . . Cσ−1(d−2)

)
.

Then M(σ ·h) =
(
σ−1 ×c M

)
h for all σ ∈ Sd−1, all M ∈ M d(d−1)

2 ×(d−1)(C) and all
h ∈ Cd−1. Therefore, for every σ ∈ Sd−1, we have

ρ ((d, . . . , d) + σ · h) =
(
d2, . . . , d2)+

(
σ−1 ×c A

)
h+ o(h) as h → 0 ,

and hence the Jacobian matrix of λ 7→ ρ(σ · λ) at (d, . . . , d) equals σ−1 ×c A. Also
denote by ×r the action of S d(d−1)

2
on M d(d−1)

2 ×(d−1)(C) that permutes the rows of
matrices, which is given by

τ ×r

 R0
...

R d(d−1)
2 −1

 =


Rτ−1(0)

...
R

τ−1
(

d(d−1)
2 −1

)
 .

Then τ · (Mh) = (τ ×r M)h for all τ ∈ S d(d−1)
2

, all M ∈ M d(d−1)
2 ×(d−1)(C) and all

h ∈ Cd−1. Therefore, for every τ ∈ S d(d−1)
2

, we have

τ · ρ ((d, . . . , d) + h) =
(
d2, . . . , d2)+ (τ ×r A)h+ o(h) as h → 0 ,

and hence the Jacobian matrix of λ 7→ τ · ρ(λ) at (d, . . . , d) equals τ ×r A.
Thus, Lemma 71 follows easily from the result below.

Lemma 77. We have{
σ ∈ Sd−1 : ∃τ ∈ S d(d−1)

2
, σ ×c A = τ ×r A

}
= ⟨σ0⟩ .

Let us postpone the proof of Lemma 77 and finish our proof of Lemma 71 first.

Proof of Lemma 71. For each σ ∈ Sd−1 \ ⟨σ0⟩ and each τ ∈ S d(d−1)
2

, the Jacobian
matrices of λ 7→ ρ(σ · λ) and λ 7→ τ · ρ(λ) at (d, . . . , d) equal σ−1 ×c A and τ ×r A,
respectively, and these two matrices are different by Lemma 77. In particular, for
every σ ∈ Sd−1 \ ⟨σ0⟩ and every τ ∈ S d(d−1)

2
, the holomorphic maps λ 7→ ρ(σ · λ)

and λ 7→ τ · ρ(λ) are different, and therefore {λ ∈ V0 : ρ(σ · λ) ̸= τ · ρ(λ)} forms a
dense open subset of V0. As a result,

V =
⋂

σ∈Sd−1\⟨σ0⟩

⋂
τ∈S d(d−1)

2

{λ ∈ V0 : ρ(σ · λ) ̸= τ · ρ(λ)}
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is a nonempty open subset of Cd−1, which is contained in V0. Set U = ρ−1
1 (V \ ∆).

Then U is a nonempty open subset of Polymc
d (C) and we have{

g ∈ Polymc
d (C) : Λ(1)

g = Λ(1)
f and Λ(2)

g = Λ(2)
f

}
=
{
αk � f : k ∈ {0, . . . , d− 2}

}
for all f ∈ U by the previous discussion. Thus, the lemma is proved. □

To complete our proof of Lemma 71, it remains to prove Lemma 77. To do this,
we shall first show the result below. From now on, write

A = (Aj,k)0≤j≤ d(d−1)
2 −1

0≤k≤d−2

.

Claim 78. The entries Aj,0, with j ∈
{

0, . . . , d(d−1)
2 − 1

}
, of the first column of A

are pairwise distinct.

Proof. By Claim 74 and (5.5), we have

Aj,k = d

(
Pk (wj)
wd

j

+
Pk

(
wd

j

)
wd2

j

)

for all j ∈
{

0, . . . , d(d−1)
2 − 1

}
and all k ∈ {0, . . . , d− 2}. In particular, we have

Aj,0 = d

(
P0 (wj)
wd

j

+
P0
(
wd

j

)
wd2

j

)
=
(

d

d− 1

)
F (wj)

for all j ∈
{

0, . . . , d(d−1)
2 − 1

}
, where

F (T ) = (d− 1)
(
P0(T )
T d

+
P0
(
T d
)

T d2

)
∈ C(T ) .

Recall that the points wj , with j ∈
{

0, . . . , d(d−1)
2 − 1

}
, are representatives for the

cycles for f0 with period 2. Moreover, the periodic points for f0 with period 2 are
given by βj , with j ∈ Z \ (d+ 1)Z, where β = exp

(
2πi

d2−1

)
as before. Therefore, it

suffices to show that
∀j, k ∈ Z \ (d+ 1)Z, F

(
βj
)

= F
(
βk
)

=⇒ k ≡ j or jd (mod d2 − 1) .

Now, note that P0(T ) = 1
d−1

(
T d−1−1

T −1

)
, which yields

F (T ) = T d−1 − 1
T d(T − 1) + T d(d−1) − 1

T d2 (T d − 1)
.

Therefore, for every j ∈ Z \ (d+ 1)Z, we have

F
(
βj
)

= βj(d−1) − 1
βjd (βj − 1) + 1 − βj(d−1)

βjd (βjd − 1) =
(
βj(d−1) − 1

)2

βj(d−1) (βj − 1) (βjd − 1)

since βd2 = β, and hence

F
(
βj
)

=

(
β

j(d−1)
2 − β

−j(d−1)
2

)2

β
j(d+1)

2

(
β

j
2 − β

−j
2

)(
β

jd
2 − β

−jd
2

) =
sin
(

jπ
d+1

)2
exp

(
−jπi
d−1

)
sin
(

jπ
d2−1

)
sin
(

jdπ
d2−1

) .
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Now, suppose that j, k ∈ Z \ (d + 1)Z are such that F
(
βj
)

= F
(
βk
)
. Then there

exists ℓ ∈ Z such that

−jπ
d− 1 = −kπ

d− 1 + ℓπ and
sin
(

jπ
d+1

)2

sin
(

jπ
d2−1

)
sin
(

jdπ
d2−1

) =
(−1)ℓ sin

(
kπ

d+1

)2

sin
(

kπ
d2−1

)
sin
(

kdπ
d2−1

) .

Using basic trigonometric identities, it follows that

k = j + ℓ(d− 1) and
1 − cos

(
jπ

d+1

)2

cos
(

jπ
d+1

)
− cos

(
jπ

d−1

) =
1 − cos

(
(j−2ℓ)π

d+1

)2

cos
(

(j−2ℓ)π
d+1

)
− cos

(
jπ

d−1

) .

Now, setting a = cos
(

jπ
d−1

)
, note that the function φ : (−1, 1) \ {a} → R given by

φ(x) = 1−x2

x−a is injective because a ∈ [−1, 1]. Therefore, cos
(

jπ
d+1

)
= cos

(
(j−2ℓ)π

d+1

)
,

which yields (j−2ℓ)π
d+1 ≡ ± jπ

d+1 (mod 2π), and hence ℓ ≡ 0 or j (mod d + 1). Thus,
k ≡ j or jd (mod d2 − 1), and the claim is proved. □

We shall now prove Lemma 77.

Proof of Lemma 77. For each k ∈ {0, . . . , d− 2}, the two maps λ 7→ ρ
(
σk

0 · λ
)

and
λ 7→ τk

0 · ρ(λ) coincide according to (5.8), and hence they have the same Jacobian
matrix at (d, . . . , d). Thus, by the previous discussion,
(5.9) ∀k ∈ {0, . . . , d− 2}, σ−k

0 ×c A = τk
0 ×r A .

Now, suppose that σ ∈ Sd−1 and τ ∈ S d(d−1)
2

satisfy σ ×c A = τ ×r A. Write

σ ×c A = (Mj,k)0≤j≤ d(d−1)
2 −1

0≤k≤d−2

= τ ×r A .

Set ℓ = σ(0), and let us prove that σ = σℓ
0. By (5.9), we have

A0,0 = M0,ℓ = Aτ−1(0),ℓ = Aτ−1(0),σℓ
0(0) = Aτ−ℓ

0 τ−1(0),0 ,

which yields τ−ℓ
0 τ−1(0) = 0 by Claim 78, and hence τ−1(0) = ℓ according to (5.4).

As a result, for every k ∈ {0, . . . , d− 2}, we have
A0,σ−1(k) = M0,k = Aℓ,k = Aτℓ

0 (0),k = A0,σ−ℓ
0 (k)

by (5.4) and (5.9). Moreover, A0,k = Aτ−k
0 (0),0 for all k ∈ {0, . . . , d − 2} by (5.9),

and hence A0,0, . . . , A0,d−2 are pairwise distinct by (5.4) and Claim 78. Therefore,
σ−1(k) = σ−ℓ

0 (k) for all k ∈ {0, . . . , d− 2}, and hence σ = σℓ
0. Thus, the lemma is

proved. □

Thus, our proof of Lemma 71 is complete. To conclude, we simply observe that
Theorem C follows immediately. For completeness, we include details.

Proof of Theorem C. For P ≥ 1, denote again by Σ(P )
d the scheme-theoretic image

of Mult(P )
d . Then we have

dim
(

Σ(2)
d

)
≥ dim

(
Σ(1)

d

)
= d− 1 = dim (Pd)

because Σ(1)
d is the image of Σ(2)

d under the projection p1 : Ad ×A
d(d−1)

2 → Ad onto
the first factor. Consequently, the induced morphism Mult(2)

d : Pd → Σ(2)
d has some
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finite degree D ≥ 1. There is a nonempty Zariski-open subset W of Σ(2)
d such that

every σ ∈ W (C) has exactly D preimages under Mult(2)
d : Pd(C) → Σ(2)

d (C). Now,
consider the preimage V of W under Mult(2)

d . Then V is a nonempty Zariski-open
subset of Pd. For every [f ] ∈ V (C), there are exactly D elements [g] ∈ Pd(C) such
that Λ(1)

g = Λ(1)
f and Λ(2)

g = Λ(2)
f . By Lemma 71, there is a nonempty open subset

U of Polymc
d (C) such that, for every f ∈ U , the elements g ∈ Polymc

d (C) such that
Λ(1)

g = Λ(1)
f and Λ(2)

g = Λ(2)
f are precisely the αk � f , with k ∈ {0, . . . , d− 2}. Now,

consider the image V ′ of U under the holomorphic map πmc
d : Polymc

d (C) → Pd(C),
via the biholomorphism Pd(C) ∼= Pmc

d (C). Then V ′ is a nonempty open subset of
Pd(C). Furthermore, each [f ] ∈ V ′ is the unique [g] ∈ Pd(C) such that Λ(1)

g = Λ(1)
f

and Λ(2)
g = Λ(2)

f . Finally, note that V (C) ∩ V ′ ̸= ∅, as V (C) is dense in Pd(C) for
the complex topology. Thus, we have D = 1, and the theorem is proved. □

Appendix A. Additional estimates on multipliers of polynomial maps

In this section, we again fix an integer d ≥ 2.

A.1. Upper bounds on absolute values of multipliers. As mentioned in the
introduction, it is not difficult to obtain upper bounds on the characteristic expo-
nents of polynomial maps at periodic points in terms of the maximal escape rate.
For completeness, let us give here some details.

Given a valued field K, we denote by |.|K its absolute value and by ∥.∥Kd−1 the
norm on Kd−1 given by

∥c∥Kd−1 = max
j∈{1,...,d−1}

|cj |K for c = (c1, . . . , cd−1) ∈ Kd−1 .

We shall also work again with the normal form introduced by Ingram in [Ing12].
Given a field K of characteristic 0 and c = (c1, . . . , cd−1) ∈ Kd−1, we define

fc(z) = 1
d
zd +

d−1∑
j=1

(−1)jτj(c)
d− j

zd−j ∈ Polyd(K) ,

where τ1(c), . . . , τd−1(c) are the elementary symmetric functions of c1, . . . , cd−1.
For our purposes, we shall use the generalization of Claims 51 and 53 below. As

it can be derived in a similar way, by using the triangle inequality and elimination
theory, we omit the proof.

Claim 79. Assume that K is an algebraically closed valued field of characteristic 0.
Then there exist δK ∈ R>0 and ∆K ∈ R both depending only on the restriction of
|.|K to Q such that gfc(z) ≥ log+|z|K + ∆K for all c ∈ Kd−1 and all z ∈ K such
that |z|K > δK∥c∥Kd−1 . In addition, there exists some EK ∈ R depending only on
the restriction of |.|K to Q such that Mfc ≥ log+∥c∥Kd−1 + EK for all c ∈ Kd−1.
Furthermore, we can take δK = 1, ∆K = 0 and EK = 0 if K is non-Archimedean
with residue characteristic 0 or greater than d.

Finally, we obtain the following result:

Proposition 80. Assume that K is an algebraically closed valued field of charac-
teristic 0. Then there exists BK ∈ R depending only on the restriction of |.|K to Q
such that M (p)

f ≤ (d− 1)Mf + BK for all f ∈ Polyd(K) and all p ≥ 1. Moreover,
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we can take BK = 0 if K is non-Archimedean with residue characteristic either 0
or greater than d.

Proof. By conjugation, we may restrict our attention to the polynomials fc, with
c ∈ Kd−1. Define

εK =
{

1 + max {δK , exp (−∆K)} if K is Archimedean
max {1, δK , exp (−∆K)} if K is non-Archimedean

and
BK = (d− 1) (log (εK) − EK) ∈ R ,

with δK ∈ R>0, ∆K ∈ R and EK ∈ R as in Claim 79. Note that BK depends only
on the restriction of |.|K to Q and we have BK = 0 if K is non-Archimedean with
residue characteristic 0 or greater than d. Now, suppose that c ∈ Kd−1, p ≥ 1 and
z0 ∈ K is a fixed point for f◦p

c . For every j ∈ {0, . . . , p− 1}, as gfc

(
f◦j

c (z0)
)

= 0,
we have ∣∣f◦j

c (z0)
∣∣
K

≤ max {δK∥c∥Kd−1 , exp (−∆K)}
≤ max {δK , exp (−∆K)} · max {1, ∥c∥Kd−1}

by Claim 79. Therefore, for every j ∈ {0, . . . , p− 1}, we have∣∣f ′
c

(
f◦j

c (z0)
)∣∣

K
=

d−1∏
ℓ=1

∣∣f◦j
c (z0) − cℓ

∣∣
K

≤ εd−1
K max {1, ∥c∥Kd−1}d−1

by the triangle inequality. As a result, we have

1
p

log
∣∣(f◦p

c )′ (z0)
∣∣
K

= 1
p

p−1∑
j=0

log
∣∣f ′

c

(
f◦j

c (z0)
)∣∣

K

≤ (d− 1) log+∥c∥Kd−1 + (d− 1) log (εK)
≤ (d− 1)Mfc +BK

by Claim 79. This completes the proof of the proposition. □

Remark 81. In [Buf03], Buff used de Branges’s theorem to show that we can take
BC = 2 log(d) in the statement of Proposition 80.

As an immediate consequence of Proposition 80, we obtain an upper bound on
the heights of multipliers of polynomial maps in terms of the critical height.

Corollary 82. There exists some B ∈ R such that H(p)
f ≤ (d − 1)Hf + B for all

f ∈ Polyd

(
Q
)

and all p ≥ 1.

A.2. Lower bounds on absolute values of multipliers. Finally, let us obtain
here a lower bound on the absolute values of multipliers of polynomial maps whose
critical points all escape.

Suppose that f ∈ Polyd(K), with K an algebraically closed valued field of char-
acteristic 0. We define the minimal escape rate mf of f by

mf = min {gf (c) : c ∈ K, f ′(c) = 0} .
Also, for p ≥ 1, we define

m
(p)
f = min

λ∈Λ(p)
f

(
1
p

log+|λ|
)

,
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where |.| denotes the absolute value on K.
As a consequence of Lemma 32 in the Archimedean case and Lemma 61 in the

non-Archimedean case, we obtain the result below. In the complex setting, it is a
slightly weaker version of [EL92, Theorem 1.6].

Proposition 83. Assume that K is an algebraically closed valued field of charac-
teristic 0 that is either Archimedean or non-Archimedean with residue characteristic
0 or greater than d and f ∈ Polyd(K). Then m

(p)
f ≥ (d− 1)mf for all p ≥ 1.

Proof. First, assume that K is endowed with an Archimedean absolute value |.|∞.
Then, by Ostrowski’s theorem, there exist an embedding σ : K ↪→ C and s ∈ (0, 1]
such that |z|∞ = |σ(z)|s for each z ∈ K, where |.| is the usual absolute value on C.
We have mf = s ·mσ(f) and m

(p)
f = s ·m(p)

σ(f) for each p ≥ 1. Thus, replacing f by
σ(f) if necessary, we may assume that f ∈ Polyd(C). Note that the desired result
is immediate if mf = 0. Now, suppose that mf > 0. Choose an integer k ≥ 0 such
that dkmf ≥ Mf . Suppose that z0 ∈ C is a periodic point for f with period p ≥ 1.
For j ∈ {0, . . . , p − 1}, denote by Uj and Vj the respective connected components
of {gf < mf } and {gf < d ·mf } containing f◦j (z0). Then Uj contains no critical
point for f for all j ∈ {0, . . . , p− 1}. By the Riemann–Hurwitz formula, it follows
that f induces a biholomorphism from Uj to Vj+1 (mod p) for all j ∈ {0, . . . , p− 1}.
Therefore, by Lemma 32, we have

1
p

log
∣∣(f◦p)′ (z0)

∣∣ ≥ d− 1
p

p−1∑
j=0

1
dj

 dkmf ≥ (d− 1)mf ,

where dj ≤ dk is the degree of f◦k : Vj →
{
gf < dk+1mf

}
for all j ∈ {0, . . . , p− 1}.

This completes the proof of the proposition in the Archimedean case.
Now, assume that K is endowed with a non-Archimedean absolute value |.| and

the associated residue characteristic either equals 0 or is greater than d. Note that
the desired inequality is immediate if the absolute value |.| is trivial or if mf = 0.
From now on, suppose that |.| is not trivial and mf > 0. Choose an integer k ≥ 0
such that dkmf ≥ Mf . Suppose that z0 ∈ K is a periodic point for f with period
p ≥ 1. We have gf (z0) = 0. By Lemma 54, the sets {gf < mf } and {gf < d ·mf }
are finite unions of disks. Thus, for j ∈ {0, . . . , p − 1}, define Uj and Vj to be the
respective disk components of {gf < mf } and {gf < d ·mf } that contain f◦j (z0).
Then Uj contains no critical point for f for each j ∈ {0, . . . , p− 1}. As a result, it
follows from Lemmas 47 and 49 that f induces a bijection from Uj to Vj+1 (mod p)
for each j ∈ {0, . . . , p− 1}. Therefore, by Lemma 61, we have

1
p

log
∣∣(f◦p)′ (z0)

∣∣ ≥ d− 1
p

p−1∑
j=0

1
dj

 dkmf ≥ (d− 1)mf ,

where dj ≤ dk is the degree of f◦k : Vj →
{
gf < dk+1mf

}
for all j ∈ {0, . . . , p− 1}.

This completes the proof of the proposition in the non-Archimedean case. □

Appendix B. About isospectral polynomial maps

B.1. Examples of isospectral polynomial maps of composite degrees. As
mentioned in the introduction, the multiplier spectrum morphisms are not always
isomorphisms onto their images. In fact, there are nonconjugate polynomial maps
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of any composite degree that have the same multiset of multipliers for each period.
Although it is already known, let us detail this here for the reader’s convenience.

To exhibit isospectral polynomial maps, one can use the following result:
Proposition 84 ([Pak19b, Lemma 2.1]). Assume that K is an algebraically closed
field of characteristic 0 and f ∈ Polyd(K) and g ∈ Polye(K), with d, e ≥ 2. Then
Λ(p)

f◦g = Λ(p)
g◦f for all p ≥ 1.

Proof. For each p ≥ 1, we have g ◦ (f ◦ g)◦p = (g ◦ f)◦p ◦ g, and hence g sends any
periodic point for f ◦ g in K with period p to a periodic point for g ◦ f in K with
period dividing p. Similarly, f sends any periodic point for g ◦ f in K with period
p ≥ 1 to a periodic point for f ◦ g in K with period dividing p. Moreover, the map
f ◦ g induces a permutation of its set of periodic points in K, which preserves the
periods. Therefore, g induces an injection from the set of periodic points for f ◦ g
in K into the set of periodic points for g ◦ f in K, which preserves the periods. In
fact, this map induced by g is a bijection as g ◦ f also permutes its periodic points
in K. Finally, for each periodic point z0 ∈ K for f ◦ g with period p ≥ 1, we have

((g ◦ f)◦p)′ (g (z0)) =

p−1∏
j=0

f ′ ((g ◦ f)◦j ◦ g (z0)
)p−1∏

j=0
g′ (f ◦ (g ◦ f)◦j ◦ g (z0)

)
=

p−1∏
j=0

f ′ (g ◦ (f ◦ g)◦j (z0)
)p−1∏

j=0
g′ ((f ◦ g)◦j (z0)

)
= ((f ◦ g)◦p)′ (z0) .

Thus, the map g induces a bijection from the set of periodic points for f ◦ g in K
onto the set of periodic points for g ◦ f in K, which preserves the periods and the
multipliers. This completes the proof of the proposition. □

As a direct consequence of Proposition 84, we obtain the following:
Corollary 85. Suppose that d ≥ 2 is not a prime number. Then, for each P ≥ 1,
the morphism Mult(P )

d is not injective.
Proof. Assume that d = d1d2, with d1, d2 ≥ 2, and define

f(z) = zd + 1 ∈ Polyd(Q) and g(z) =
(
zd1 + 1

)d2 ∈ Polyd(Q) .
Then we have f = h1 ◦ h2 and g = h2 ◦ h1, where h1(z) = zd1 + 1 ∈ Polyd1(Q) and
h2(z) = zd2 ∈ Polyd2(Q), and therefore Mult(P )

d ([f ]) = Mult(P )
d ([g]) for all P ≥ 1

by Proposition 84. However, [f ] ̸= [g] in Pd(Q) because f has only 1 critical point
in C whereas g has exactly d1 + 1 critical points in C. This completes the proof of
the corollary. □

Actually, it is suspected that Proposition 84 is the unique source of examples of
nonconjugate isospectral polynomial maps (see [Pak19a, Problem 3.1]).

B.2. The case of quartic polynomial maps. Finally, as isospectral polynomial
maps of degree 2 or 3 are necessarily conjugate, let us investigate the situation for
polynomial maps of degree 4.

Using explicit expressions for the multiplier spectrum morphisms, we show here
that the pairs of nonconjugate isospectral quartic polynomial maps all come from
Proposition 84. More precisely, we obtain the following result:



MODULI SPACES OF POLYNOMIAL MAPS AND MULTIPLIERS AT SMALL CYCLES 59

Proposition 86. Assume that K is an algebraically closed field of characteristic 0
and f, g ∈ Poly4(K) satisfy Λ(1)

f = Λ(1)
g and Λ(2)

f = Λ(2)
g . Then [f ] = [g] in P4(K)

or there exist h1, h2 ∈ Poly2(K) such that f = h1 ◦ h2 and g = h2 ◦ h1.

Proof. We shall first work with monic centered quartic polynomials. Recall that

Polymc
4 =

{
z4 + a2z

2 + a1z + a0
}

and that the algebraic group µ3 =
{
ω : ω3 = 1

}
acts on Polymc

4 by

ω �
(
z4 + a2z

2 + a1z + a0
)

= z4 + ω−1a2z
2 + a1z + ωa0 .

Therefore, as Pmc
4 = Polymc

4 /µ3, we have

Q [Pmc
4 ] = Q [Polymc

4 ]µ3 = Q[α, β, γ, δ] ,

where
α = a1 , β = a3

0 , γ = a3
2 and δ = a0a2 .

Now, for h1(z) = z2 + c1 ∈ Polymc
2 and h2(z) = z2 + c2 ∈ Polymc

2 , we have

h1 ◦ h2(z) = z4 + a2z
2 + a1z + a0 ∈ Polymc

4 , with

 a0 = c2
2 + c1

a1 = 0
a2 = 2c2

,

and [h1 ◦ h2] = [h2 ◦ h1] in Pmc
4 if and only if c3

1 = c3
2. Thus, setting

Smc
4 = {[h1 ◦ h2] : h1, h2 ∈ Polymc

2 } ⊆ Pmc
4

and
Lmc

4 = {[h1 ◦ h2] : h1, h2 ∈ Polymc
2 , [h1 ◦ h2] = [h2 ◦ h1]} ⊆ Smc

4 ,
we have

Smc
4 = {α = 0} and Lmc

4 = {α = 0} ∩
{

64β3 − γ2 + 12γδ − 48δ2 − 8γ = 0
}

.

For simplicity, write sj = σ
(1)
4,j for j ∈ {1, . . . , 4} and tj = σ

(2)
4,j for j ∈ {1, . . . , 6}, so

that
Mult(2)

4 = (s1, . . . , s4, t1, . . . , t6) : Pmc
4 → A10

via the natural isomorphism P4 ∼= Pmc
4 . Using the software SageMath, we obtain

s1 = −8α+ 12 ,
s2 = 18α2 − 60α+ 4γ − 16δ + 48 ,
s4 = −27α4 + 108α3 − 4α2γ + 144α2δ − 144α2 + 8αγ − 288αδ

+ 16γδ − 128δ2 + 64α+ 256β + 128δ ,
t2 = 27α4 + 324α3 + 4α2γ − 144α2δ + 1440α2 + 24αγ − 864αδ

− 16γδ + 128δ2 + 2880α− 256β + 96γ − 512δ + 3840 .

Then, using elimination with the software SageMath, we obtain
• an expression for α as an element of Q [s1]:

(B.1) α = −1
8 s1 + 3

2 ,
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• a polynomial equation in δ with coefficients in Q [s1, s2, s4, t2], degree 1 and
leading coefficient a constant multiple of s1 − 12:

(B.2) 2048 (s1 − 12) δ − 9s3
1 + 660s2

1 − 16s1s2 − 19952s1 + 576s2 − 16s4 − 16t2
+ 202944 = 0 ,

• a polynomial equation in δ with coefficients in Q [s1, s2, s4, t2], degree 2 and
constant leading coefficient:

(B.3) 1048576δ2 + 512
(
315s2

1 + 4s2
2 − 3624s1 − 352s2 − 12s4 + 4t2 − 9552

)
δ

− 9s2
1s

2
2 + 3672s2

1s2 + 81s2
1s4 − 63s2

1t2 − 24s1s
2
2 − 344240s2

1 − 124416s1s2

+ 1168s1s4 + 784s1t2 + 4848s2
2 − 672s2s4 − 160s2t2 + s2

4 + 2s4t2 + t22

+ 7144320s1 + 1537152s2 − 12432s4 − 11664t2 − 12936960 = 0 ,

• an expression for β as an element of Q [δ, s1, s2, s4, t2]:

β = −3
2048δs

2
1 + 3

65536s
2
1s2 + 1

4δ
2 + 31

256δs1 − 1
64δs2

+ 103
16384s

2
1 − 1

2048s1s2 − 1
65536s1s4 − 1

65536s1t2 − 127
128δ

− 1007
2048s1 + 69

4096s2 + 55
16384s4 − 9

16384 t2 + 7131
1024 ,

(B.4)

• an expression for γ as an element of Q [δ, s1, s2, s4, t2]:

(B.5) γ = −9
128s

2
1 + 4δ − 3

16s1 + 1
4s2 + 3

8 .

In particular, by (B.1) and the discussion above, we have Smc
4 = {s1 = 12}. Thus,

by the relations (B.1), (B.2), (B.4) and (B.5), each element [f ] ∈ Pmc
4 (K)\Smc

4 (K)
is the unique [g] ∈ Pmc

4 (K) such that Mult(2)
4 ([g]) = Mult(2)

4 ([f ]). Now, note that
every element of K10 has at most two preimages in Pmc

4 (K) under Mult(2)
4 by the

relations (B.1), (B.3), (B.4) and (B.5). Moreover, for all [f ] = [h1 ◦ h2] ∈ Smc
4 (K),

with h1, h2 ∈ Polymc
2 (K), the elements [h1 ◦ h2] and [h2 ◦ h1] of Pmc

4 (K) are both
preimages of Mult(2)

4 ([f ]) under Mult(2)
4 by Proposition 84, and these elements are

distinct if [f ] ∈ Smc
4 (K) \ Lmc

4 (K). As a result, for every [f ] = [h1 ◦ h2] ∈ Smc
4 (K),

with h1, h2 ∈ Polymc
2 (K), we have

∀[g] ∈ Pmc
4 (K), Mult(2)

4 ([g]) = Mult(2)
4 ([f ]) ⇐⇒ [g] = [h1 ◦ h2] or [h2 ◦ h1]

since Lmc
4 is a proper Zariski-closed subset of Smc

4 .
Finally, assume that f, g ∈ Poly4(K) satisfy Λ(1)

f = Λ(1)
g and Λ(2)

f = Λ(2)
g . Then,

using the natural isomorphism P4 ∼= Pmc
4 , it follows from the discussion above that

[f ] = [g] in P4(K) or there exist h1, h2 ∈ Polymc
2 (K) such that [f ] = [h1 ◦ h2] and

[g] = [h2 ◦ h1] in P4(K). In the latter situation, there are ϕ, ψ ∈ Aff(K) such that
f = ϕ � (h1 ◦ h2) and g = ψ � (h2 ◦ h1) in Poly4(K), and this yields f = k1 ◦ k2 and
g = k2 ◦ k1, where k1 = ϕ ◦ h1 ◦ ψ−1 and k2 = ψ ◦ h2 ◦ ϕ−1. Thus, the proposition
is proved. □
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